
Analysing a Natural Language to Code Translation System Applied to
Spanish Queries

Nitin Balachandran
nitinkb2015@gmail.com

Yunheng Han
yhhan@terpmail.umd.edu

Zeping He
zepinghe@umd.edu

John Kastner
kastner@umd.edu

Callie Y Kim
ckim1123@terpmail.umd.edu

Anjali Mittu
amittu@umd.edu

Suteerth Vishnu
svishnu@terpmail.umd.edu

University of Maryland
College Park, MD

Abstract

Generating code from natural language is an
important task, as often times, people are able
to verbally state their intention but are un-
able to translate this intent into code. With
the advent of machine learning, models are
able to convert natural language into code.
However, these approaches only address this
challenge in English and not in other lan-
guages. In this paper we explore how current
methods of code generation from natural lan-
guage perform when generating code from nat-
ural languages other than English, specifically
Spanish. While our experiments show lower
BLEU score on Spanish datasets than English
datasets, we do not believe we can conclude
that the evaluated model generally performs
worse on Spanish than English due to concerns
about the quality and quantity of our Spanish
data.

1 Introduction

The goal of our project is to investigate whether
an existing natural language to code conversion
technique generalizes well to languages other than
English, specifically Spanish. It is often easier to
describe code in Natural Language than to imme-
diately know the programming language specific
implementation. This has lead to the rise of Stack
Overflow, an open online community where users
can ask for help with their programming problems.
Questions on Stack Overflow are often phrased
so that a natural language intent is given in the
title. An answer will then include code which im-
plements the intent. Stack Overflow is helpful to
new and veteran software engineers. More than 52

million people visit Stack Overflow each month to
post new questions, answer questions, or look at
more than 18 million answered questions (Stack
Exchange Inc, 2019). Natural Language to code
generators could help speed up the process of look-
ing up questions by allowing users to directly gen-
erate code instead.

Techniques for natural language to code conver-
sion have been developed over the past decades.
Early work required controlled inputs with re-
stricted syntax. However, modern approaches can
reach high levels of accuracy in producing unbound
output. Code generation is difficult because the
output must be structured. It is hard for sequence-
to-sequence models to output code that is well-
formed. To solve this problem, ASTs were used as
output from the sequence-to-sequence models (Ra-
binovich et al., 2017). Code generation has been
demonstrated with various output languages in-
cluding lambda calculus (Yin and Neubig, 2018),
SQL (Yin and Neubig, 2018), Java (Iyer et al.,
2018), and Python (Yin and Neubig, 2017; Rabi-
novich et al., 2017).

In this paper, we focused on the translation tech-
niques from NL2Code (Yin and Neubig, 2017) and
TranX (Yin and Neubig, 2018) to produce Python
code. The original NL2Code paper uses three dif-
ferent datasets: HearthStone, Django and IFTTT.
Instead, we focused on using the CoNaLa dataset.
It is interesting to see how existing approaches gen-
eralize to natural languages other than English. It
is important for a model to be able to learn from
languages other than English, since code is not just
written by English speakers. We compare the per-
formance of the TranX translation techniques on



English and Spanish using the CoNaLa dataset, the
CoNaLa dataset translated into Spanish and a Span-
ish dataset mined from the Spanish language Stack
Overflow website1.

2 Related Work

2.1 Early Methods
Natural language descriptions are ambiguous and
imprecise, which lead to difficulty in generating
executable code. As a result, controlled natural lan-
guage, a subset of language with restricted syntax
and semantics, is used in early work (Schwitter and
Fuchs, 1996). The input text, if controlled, can be
parsed easily through rule-based approaches. This
method is able to generate executable code effec-
tively on the basis of controlled language. How-
ever, natural language descriptions from users are
usually unrestricted. This method therefore has
inevitable limitations in practice.

In Wong and Mooney (2006) a statistical ap-
proach to learn semantic parsing from sentences
was proposed. It consists of a synchronous context-
free grammar (SCFG) and a probabilistic model on
possible derivations. The learning task is twofold:
the rule induction and the probabilistic model in-
duction. To induce the rules, the authors train a
word alignment model and extract the transforma-
tion rules from most probable word alignments be-
tween the sentences and the mean representations
(MR). For the probabilistic model, the authors use a
maximum entropy model of conditional probability
over the derivations and observations.

The approach from Wong and Mooney (2006) is
able to translate a natural language sentence into
the MR, which is in the form of a nested structure.
The nested structure then can be converted into ex-
ecutable code, so it is useful in code generation
tasks. Nevertheless, the approach is based on sta-
tistical models, while in this project, we utilise a
framework taking advantage of learning methods,
and expect better performance.

2.2 Reinforcement Learning
Machine learning methods are widely used in mod-
ern approaches to problems in Natural Language
Processing, and achieve state-of-the-art results in
many tasks. In Branavan et al. (2009), the au-
thors proposed a reinforcement learning framework
to generate executable actions from natural lan-
guage instructions in the Microsoft Windows trou-

1https://es.stackoverflow.com

bleshooting guide. The authors first train a model
with a simple reward information, whose perfor-
mance is close to the fully supervised model. Af-
terwards, the performance is further improved by
data augmentation.

Reinforcement learning has been proven to be
effective in action generation. Note that the instruc-
tions are given in a sequential order, and the actions
are generated sequentially as well so, a different
frame work is required to generate code with nested
structures.

2.3 Encoder-Decoder Models

In order to better generate code with nested struc-
tures, Yin and Neubig (2017) introduced the
combined use of a neural network model along
with a grammar model. The authors used an
encoder-decoder model based on a bidirectional
long short-term memory (BiLSTM), which gener-
ates an Abstract Syntax Tree (AST). The decoder
uses a grammar model, which is used to create
the AST from a sequence of tree-constructing ac-
tions. There are three possible actions at each step:
APPLYCONSTR, REDUCE, and GENTOKEN. The
set of actions and terminals are used by the decoder
to produce the AST. Yin and Neubig (2017) showed
improvements of 11.7% and 9.3% over previous
work. The models created by the authors were
tested over three datasets: HearthStone, Django,
and IFTTT.

TranX (Yin and Neubig, 2018) expanded on this
work by introducing the use of parent feeding in the
decoding stage. The parent feeding vector contains
information about the parent’s embedding and the
state of its constructor. TranX produced a 1% im-
provement in accuracy over Yin and Neubig (2017)
when applied to its Python datasets.

Iyer et al. (2018) expanded on the neural network
grammar model from Yin and Neubig (2017). Re-
lated to our work, the decoder they chosen is an an
LSTM-based RNN that produces a context vector
at each step. Each vector is used to compute a dis-
tribution over next possible actions from the gram-
mar model. Unlike the previous work, the authors
use a two-step attention method which consists of
a general attention mechanism and attention over
return types, variables and methods from the envi-
ronment. The authors tested their model against
multiple baselines from previous works. With this,
they found their model had improvements in both
exact match accuracy and BLEU score.

https://es.stackoverflow.com


2.4 Utilizing Transformers

In another piece of related work Kusupati and
Ailavarapu (2018). converted natural language into
code using a transformer model. This does not
use recurrent structures like RNN and LSTM, and
hence is different from the encoder-decoder models.
The transformer uses multiple attention heads as
well as a self attention component to compute the
hidden vector representation of a sequential input.
The authors experimental study on empirical data
shows that the transformer approach can outper-
form a basic encoder-decoder approach; however,
they do not compare to some of the more recent
work discussed above.

3 Method

3.1 Data Source

All of our data is mined from the Stack Exchange
Data Dump2. This is accomplished by identifying
which snippets of code within an answer are most
likely to fulfil the intent described by the title of
the question. This task is done using reinforcement
learning and requires a small gold standard set to
train a model before it can be used to automatically
mine more data. In particular, Yin et al. (2018)
used a gold standard dataset with 330 entries for
Java and 527 entries for Python. This gold standard
dataset must be in the language for which we are
interested in collecting additional data. We do not
have a gold standard dataset for Spanish intents.
The resulting data collected from Stack Overflow
consists of the title of a question from Stack Over-
flow (the intent) and a snippet of code taken from
one of the answers to the question.

3.1.1 CoNaLa
We are using the CoNaLa dataset as our baseline, as
it is most similar to the Spanish data we collected.
The dataset is divided into two distinct parts. There
is manually curated data that are generally high
quality. In addition to the original title of the ques-
tion, this curated data includes a rewritten title that
makes the exact intent of the question clearer and
should make learning easier.

The second part of the dataset contains data that
has been automatically mined from Stack Overflow
using the process described in Yin et al. (2018).
This portion of the dataset is considerably larger

2https://archive.org/details/
stackexchange

than the manually annotated data, which is obvi-
ously advantageous. However, it has not been re-
viewed, so it is possible that it contains erroneous
entries.

In this paper, we use both parts of the CoNaLa
dataset. The curated CoNaLa dataset consist of
2,379 training examples and 500 test examples.
The automatically mined dataset consists of 16,880
training examples and 4,453 test examples. Two
samples entries from the curated CoNaLa dataset
are shown in Figure 1a and the full dataset is avail-
able online3.

3.1.2 Spanish Translated CoNaLa
We created another dataset by translating the in-
tents and the rewritten intents from the CoNaLa
dataset to Spanish using the Google Translate API4.
However, there are limitations to this dataset. The
variable names remain in English, since we could
not translate the code to Spanish. There could also
be idiosyncrasies from the translation system in-
troduced into the data that would not be present in
a native speakers use of the language. These id-
iosyncrasies could be learned by the model we use
which would decrease its usefullness when applied
to queries from native speakers. A key benefit of
this dataset is that it is much larger than the dataset
we were able to mine from the Spanish language
Stack Overflow. We used the same 2,379 train-
ing examples and 500 test examples as discussed
above.

3.1.3 Mined Spanish Data
The mined Spanish data consists of 94 training ex-
amples. Because of the low number of training
examples, we used the same 94 examples as the
test set. Two samples from this dataset are shown
in Figure 1b and the full dataset is available on
GitHub5. Note that since this dataset was collected
automatically from the Stack Exchange data dump,
it does not have the rewritten_intent field
that is included in the curated CoNaLa dataset. The
consequence of this is that the correspondence be-
tween the intent and the code snippet may not be as
clear and therefore be harder for a model to learn.

We initially attempted to collect the dataset using

3https://conala-corpus.github.io/
4https://py-googletrans.readthedocs.io
5While this paper focuses on the Spanish dataset, the

repository contains data collected using the same tech-
nique for Portuguese, Russian, and Japanese in addi-
tion to Spanish. https://github.com/jackastner/
so-nlcode-multilang

https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
https://conala-corpus.github.io/
https://py-googletrans.readthedocs.io
https://github.com/jackastner/so-nlcode-multilang
https://github.com/jackastner/so-nlcode-multilang


{
"intent": "How can I send a signal from a python program?",
"rewritten_intent": "send a signal ‘signal.SIGUSR1‘"
+ "to the current process",
"snippet": "os.kill(os.getpid(), signal.SIGUSR1)",
"question_id": 15080500

},{
"intent": "Decode Hex String in Python 3",
"rewritten_intent": "decode a hex string ’4a4b4c’ to UTF-8.",
"snippet": "bytes.fromhex(’4a4b4c’).decode(’utf-8’)",
"question_id": 3283984

}

(a) Curated CoNaLa Dataset

{
"intent": "Como llamar a una variable desde template django?",
"snippet": "{{request.user.profile.lab.nombre}}",
"question_id": 240978

},{
"intent": "¿Cómo puedo hacer lo mismo que random.randint"
+ "pero con números reales?",
"snippet": "random.random() * 20 - 10",
"question_id": 241805

}

(b) Mined Spanish Dataset

Figure 1: JSON formatted samples from the CoNaLa and mined Spanish datasets

the techniques presented by Yin et al. (2018); Yao
et al. (2018). These papers both use neural network
based techniques to predict the likelihood that a
snippet of code corresponds to the answer to some
question. These classifiers are applied to Stack
Overflow data to determine what snippet of code
extracted from an accepted answer is most likely
to answer the question posed by title of the original
post. Yin et al. (2018) was used to to construct the
original CoNaLa dataset. Unfortunately, we were
not able to able to successfully apply either of these
techniques to the Spanish Stack Overflow dataset.

Instead, we use an adaptation of an older data
collection technique (Iyer et al., 2016) that relies on
a series of heuristics. In particular, it finds accepted
answers that contain exactly one snippet of code
where this snippet is one line long after remov-
ing boilerplate code such as module imports and
function headers. The original implementation of
this technique also used a support vector machine
(SVM) classifier to filter for “how to” question:
questions that ask how to do something rather than
asking for an overview of a topic or some other type
of question that is less likely to be answered by a
single snippet of code. Using this filter removed
too many candidates from our dataset. Since our
dataset was already considerably smaller than we
would like, we removed the filter to have a larger if
slightly lower quality dataset.

3.2 Preprocessing Data

Before the data can be input to the encoder/decoder
model, the data must be preprocessed and loaded
into custom Dataset objects. We modified a script
from Yin and Neubig (2018) in order to do this. We
pre-process the data the same way as described in
Yin and Neubig (2017, 2018). This includes tok-
enizing the natural language intent snippets using
NLTK (Bird et al., 2009), and replacing uncommon
words with a <unk> token. The custom Dataset

Dataset

Encoder

Context Sensi-
tive Embedding

Decoder

AST

BiLSTM

LSTM, beam search

Figure 2: Overview of NL2code and TranX pipeline.

objects consists of two parts: vocab and examples.
The vocab is a dictionary of all the words found

in the natural language snippets, along with their
frequency counts. For the CoNaLa dataset, the vo-
cab consists of 661 unique words. After translating
the CoNaLa dataset to Spanish, its vocab consists
of 757 unique words. Our mined Spanish dataset
consists of only 54 unique words.

Each example consists of a tokenized version
of the intent, the AST representation of the code,
the raw text of the code, and the reference action
sequence produced from the AST according to the
grammar model.

3.3 Encoder Decoder Model

Initially we used the model from original
NL2code (Yin and Neubig, 2017) paper which is
based on an encoder/decoder model. For encod-
ing, it uses a bi-directional long short-term memory
(BiLSTM) network. The decoder is a conditional
LSTM with attention. Along with the decoder, the
code uses a beam search with a size of 15 to pick
the best rule from the grammar as output for the
AST. To create the model, the code uses the neural
network library nn which is built on top of Ten-



sorFlow. The flow of data through this model is
shown in Figure 2.

We also used the successor of NL2code,
TranX (Yin and Neubig, 2018). The TranX model
comes from the same creators of NL2code. Be-
cause of this, both models take as input very simi-
lar data objects, so our preprocessing step did not
require any major changes. The encoder/decode
part of the model is almost the same from NL2code
(Yin and Neubig, 2017) except with the addition
of parent feeding in the decoding stage. The par-
ent feeding vector contains information about the
parent’s embedding and the state of its constructor
from the reference action sequence.

4 Results & Analysis

We evaluate the generated code against the refer-
ence code using Bilinear Evaluation Understudy
(BLEU). These are the same metrics used in the
original NL2code (Yin and Neubig, 2017) and
TranX (Yin and Neubig, 2018) papers. We use
token-level BLEU since it produces a higher score
when more sub-components of the generated code
match the ground truth code. The results of our
evaluation are summarized in Table 1.

4.1 CoNaLa - NL2Code

We first ran the NL2Code model on its previous
datasets and got results matching to the original
paper. We had trouble getting the same level of re-
sults with the curated CoNaLa dataset. The BLEU
score is 17.8 with the CoNaLa dataset, which is
much lower than the BLEU scores from the orig-
inal paper (Yin and Neubig, 2017). In this paper,
the HearthStone dataset produced a BLEU score
of 75.8 and the Django dataset produced a BLEU
score of 84.5.

One problem was that NL2Code was designed
to generate Python 2 code, while CoNaLa dataset
is designed for Python 3. This caused problems
because the code was not able to create accurate
ASTs for some examples. Another issue was that
the grammar in the CoNaLa dataset is very differ-
ent from the previous datasets used with this model.
The HearthStone, Django and IFTTT datasets are
all domain specific, while the CoNaLa dataset con-
tains general purpose Python code snippets. We
believe this made it harder for the model to learn
from the examples. Because of these issues, we
decided to use the TranX model for all subsequent
runs.

4.1.1 CoNaLa - TranX
The CoNaLa dataset is one of the original datasets
that runs with the TranX model. Because of this,
we did not need to make any changes to train with
the CoNaLa dataset and we were able to achieve
similar results to the paper. Our result was a BLEU
score of 24.05; the result from the authors Yin and
Neubig (2018) is 24.5.

One possible reason that the BLEU score is bet-
ter than NL2Code on CoNala dataset is how it
pre-process variables and values of the intent. In
CoNala, variables and values are distinguished by
quotes. TranX has a slot-map where it stores those
distinguished variable and values then later replace
them in AST. So even if the predicted code had
different functions than the referenced code, it was
able to match the values and variables.

4.2 Spanish Translated CoNaLa

The Spanish CoNaLa dataset resulted in a BLEU
score of 15.4 which was significantly lower than
the English CoNaLa dataset. This could indicate
that TranX is not able to perform as well on Spanish
data as on English data; however, this Spanish data
is the output of machine translation, so it may be
not representative of real Spanish data.

4.3 Mined Spanish Data

The mined Spanish data preformed the worst. This
is most likely due to the considerably smaller size
of this dataset when compared to the CoNaLa
dataset. The 94 pairs of natural language intents
and code snippets are very unlikely to be sufficient
for training any model. Additionally, the quality of
this dataset may be lower than the CoNaLa dataset
because we gathered the data without any gold stan-
dard Spanish language/code pairs.

The BLEU score after training and testing TranX
on the mined data was 0. We suspected this was
largely due to a lack training data. To confirm this,
we tested the TranX model trained using the trans-
lated CoNaLa dataset on the mined Spanish data.
This resulted in a slightly higher BLEU score of
2.58. While this is better than the 0 BLEU score
obtained using only the mined data, it is still notice-
ably lower than the score when testing the model
on the translated CoNaLa dataset.

One possible reason for this anomaly is that
translating the English CoNaLa to Spanish intro-
duced artifacts that are learned by the model, thus
inhibiting performance on real Spanish data.



Dataset Model BLEU Score

CoNaLa NL2Code 17.8
CoNaLa TranX 24.05
CoNaLa — Spanish Translation TranX 15.4
English Stack Overflow TranX 2.63
Spanish Stack Overflow TranX 0
Spanish Stack Overflow TranX — Trained on Spanish CoNaLa 2.58

Table 1: Token level BLEU score for each dataset.

It is also possible that our technique for mining
Spanish data does not produce well aligned natural
language/code pairs. That is, some of the pairs we
mined may not correspond to an intent and code
that accomplishes that intent. If this is the case,
then we would need to improve our data mining
technique, possibly by applying the newer tech-
niques used by Yin et al. (2018); Yao et al. (2018).
As mentioned earlier, we attempted to do this but
were not successful.

To determine if our data mining strategy was
at fault, we applied it to the English Stack Over-
flow data dump to obtain a new English dataset.
We then trained and tested TranX on this dataset.
The model achieved a similar BLEU score of 2.63.
This shows that TranX was not able to learn from
either dataset gathered using our mining technique,
even though it was able to learn from the CoNaLa
dataset, suggesting that the data mining technique
is a problem.

4.4 Measuring Similarity with Moss

Since we felt that BLEU score might not be the
best measure of code similarity, we also tried to
evaluate our result by using Moss, a code similar-
ity detection system proposed by Schleimer et al.
(2003). For each model we converted every intend
output to single line and aggregated all the outputs
into a single file before doing the same for the mod-
els predicted output. We then used Moss to check
for similarity between the file containing ground
truth outputs and the file containing model outputs.

Even though Moss does not require syntactically
correct code as input, it failed to detect any similar-
ity between model output and the reference snip-
pets. One possible explanation is that as Moss tries
to tokenize each file and find identical pairs in some
clusters, but each line of the code in our output is
independent of the other, causing Moss to have
difficulties detecting similarities.

5 Conclusion

This paper aims to analyse the performance of the
TranX model for natural language to code transla-
tion on Spanish language queries through the use
of two Spanish datasets: one obtained by apply-
ing machine translation to an English dataset and
another obtained by mining data from the Spanish
Stack Overflow website.

In our experiments we first found that TranX
performs as well as expected based on the results
from its paper when applied to the English CoNaLa
data set (BLEU score 24.05). We then evaluated
TranX on three different Spanish dataset: translated
CoNaLa, mined Spanish Stack Overflow, and a hy-
brid dataset where the training set is drawn from
translated CoNaLa while the test set is our mined
Spanish dataset. The BLEU score obtained from
these evaluations were 15.64, 0, and 2.58 respec-
tively.

These scores are all lower than the score ob-
tained on the original CoNaLa dataset; however,
we are not reasonably able to conclude that TranX
does not perform as well on Spanish data as it does
on English data. We have identified potential issues
with our data that could be the cause of the lower
scores rather than the difference in language.

The Spanish translation of the CoNaLa dataset
is the result of machine translation and, as such,
is likely not representative of the language a na-
tive Spanish speaker would use. The dataset mined
from the Spanish Stack Overflow should be much
more representative of how Spanish is actually
used, but this dataset is too small to be useful in
training the model. We also have concerns about
the accuracy of the data collected by our method.
The hybrid approach is perhaps the most reliable as
it is evaluated on real examples of Spanish queries
while still being trained on a sufficiently large
dataset. On the other hand, this approach inherits
the problems associated with both of our datasets.



It has the opportunity to learn idiosyncrasies of the
machine translation process, and it is evaluated on
a relatively small and potentially inaccurate test
set.

References
Steven Bird, Ewan Klein, and Edward Loper.

2009. Natural Language Processing with Python.
O’Reilly Media, Inc.

S. R. K. Branavan, Harr Chen, Luke S. Zettlemoyer,
and Regina Barzilay. 2009. Reinforcement Learn-
ing for Mapping Instructions to Actions. In Pro-
ceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the
AFNLP: Volume 1 - Volume 1, ACL ’09, pages 82–
90, Stroudsburg, PA, USA.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing Source Code
using a Neural Attention Model. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2073–2083.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping Language to
Code in Programmatic Context. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1643–1652, Brus-
sels, Belgium.

Uday Kusupati and Venkata R.T. Ailavarapu. 2018.
Natural language to code using transformers.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract Syntax Networks for Code Gener-
ation and Semantic Parsing. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1139–1149, Vancouver, Canada.

Saul Schleimer, Daniel S Wilkerson, and Alex Aiken.
2003. Winnowing: local algorithms for document
fingerprinting. In Proceedings of the 2003 ACM
SIGMOD international conference on Management
of data, pages 76–85. ACM.

Rolf Schwitter and Norbert E. Fuchs. 1996. Attempto
- From Specifications in Controlled Natural Lan-
guage towards Executable Specifications. In In
Proceedings: EMISA Workshop ’Natuerlichsprach-
licher Entwurf von Informationssystemen - Grundla-
gen, Methoden, Werkzeuge, Anwendungen.

Stack Exchange Inc. 2019. About Stack Overflow.

Yuk Wah Wong and Raymond J. Mooney. 2006. Learn-
ing for Semantic Parsing with Statistical Machine
Translation. In Proceedings of the Main Confer-
ence on Human Language Technology Conference
of the North American Chapter of the Association of

Computational Linguistics, HLT-NAACL ’06, pages
439–446, Stroudsburg, PA, USA.

Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and
Huan Sun. 2018. StaQC: A Systematically Mined
Question-Code Dataset from Stack Overflow. In
Proceedings of the 2018 World Wide Web Confer-
ence on World Wide Web - WWW ’18, pages 1693–
1703, Lyon, France.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning
to Mine Aligned Code and Natural Language Pairs
from Stack Overflow. In Proceedings of the 15th In-
ternational Conference on Mining Software Reposi-
tories, pages 476–486.

Pengcheng Yin and Graham Neubig. 2017. A Syntac-
tic Neural Model for General-Purpose Code Genera-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 440–450, Vancouver,
Canada.

Pengcheng Yin and Graham Neubig. 2018. TRANX: A
Transition-based Neural Abstract Syntax Parser for
Semantic Parsing and Code Generation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demon-
strations, pages 7–12, Brussels, Belgium.

https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192
https://www.cs.utexas.edu/~uday/data/deepcode.pdf
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/P17-1105
https://stackoverflow.com/company
https://doi.org/10.3115/1220835.1220891
https://doi.org/10.3115/1220835.1220891
https://doi.org/10.3115/1220835.1220891
https://doi.org/10.1145/3178876.3186081
https://doi.org/10.1145/3178876.3186081
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.1145/3196398.3196408
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002

