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Background
Gamma-ray bursts (GRBs) are some of the most energetic events in the known universe; in 
just a couple of seconds, GRBs release more than 1051 ergs. Because of this, GRBs remain 
luminous even at high redshift, making them one of the few objects seen at redshifts 
>~6. There are two types of GRBs observed: long GRBs and short GRBs, which are divided 
based on their light curve and duration. Short GRBs are thought to come from the merger

Swift Challenge

Likelihood Function

The burst alert telescope (BAT) on Swift uses a trigger algorithm with >500 criteria based on 
photon count rate, and additional image threshold for localization.  This complex trigger 
algorithm successfully increases the number of GRBs detected, yet makes estimating the 
detection fraction more difficult. The complex trigger algorithm introduces selection effects 
on GRBs. Previous studies usually estimate the trigger algorithm using a flux detection

of two compact objects such as neutron 
stars, while long GRBs comes from the core 
collapse of a massive star.     
GRBs are particularly important for studying 
star formation rate (SFR).. At high redshifts, 
tracing the SRF is very difficult due to the 
fact that it is hard to see out so far. This 
results in rates differing by more than an 
order of magnitude. GRBs should be able to 
trace SFR since they:
• Can be seen at high redshifts
• Are the result of the death of a massive 

star

The number of intrinsic GRBs occurring in Swift’s field of view is given by Equation 1.  Where 
the factor of 4𝜋𝜋

6
accounts that Swift can only observe a sixth of the sky at any time. ∆𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 = 0.8

which is the amount of time Swift spends observing per year. 𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺;𝑑𝑑𝑑𝑑 is the GRB rate per 
redshift per solid angle accounting for time dilation and comoving volume.

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖 =
4𝜋𝜋
6
∆𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺;𝑑𝑑𝑑𝑑 𝑧𝑧𝑖𝑖 𝑑𝑑𝑧𝑧

The expected number of observed GRBs comes from multiplying Equation 1 by the detection 
fraction (which was derived from the Swift emulator).

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 𝑧𝑧𝑖𝑖 = 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖 𝐹𝐹𝑑𝑑𝑒𝑒𝑖𝑖(𝑧𝑧𝑖𝑖) =
4𝜋𝜋
6
∆𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺;𝑑𝑑𝑑𝑑 𝑧𝑧𝑖𝑖 𝐹𝐹𝑑𝑑𝑒𝑒𝑖𝑖(𝑧𝑧𝑖𝑖)𝑑𝑑𝑧𝑧

Since the data is expected to have a Poisson distribution, the log-likelihood is found to be 
Equation 3, where 𝑖𝑖 𝑑𝑑𝑒𝑒𝑖𝑖is each detection.

ℒ 𝑛𝑛 = −𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 + �
𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑

log(𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧𝑖𝑖))

For a full deviation see Graff et al. (2015)

One-Break and Two-Break Models

Parameter Min Max
𝑛𝑛0 0.01 2.00
𝑛𝑛1 0.00 4.00
𝑛𝑛2 -6.00 0.00
𝑧𝑧1 0.00 10.00

Parameter Min Max
𝑛𝑛0 0.01 2.00
𝑛𝑛1 0.00 4.00
𝑛𝑛2 -6.00 6.00
𝑛𝑛3 -10.00 0.00
𝑧𝑧1 0.00 10.00
𝑧𝑧2 0.00 10.00

threshold. This might not be a good estimate 
since each BAT trigger criterion adopts different 
signal-to-noise ratio threshold.
In this study we applied a fast emulator for the 
trigger algorithm using four different machine 
learning algorithms (MLAs): 
• random forest
• boosted decision trees
• support vector machines
• artificial neural networks.
Figure 2 shows the results of the detection 
fraction.

Parameter Method Max Like 90% CI

𝑛𝑛0
RF .513 [0.247, 0.895]
AB .523 [0.246, 0.915]
NN .405 [0.235, 0.988]

𝑛𝑛1
RF 1.656 [1.141, 2.265]
AB 1.635 [1.154, 2.269]
NN 1.864 [1.025, 2.351]

𝑛𝑛2
RF -5.997 [-5.668, -0.224]
AB -5.942 [-5.686, 0.252]
NN -.333 [-5.608, 0.218]

𝑧𝑧1
RF 6.70 [3.612, 9.612]
AB 6.694 [3.617, 9.591]
NN 3.439 [3.186, 9.402]

𝑁𝑁exp
RF 4434 [2952, 6844]
AB 4370 [2965, 6794]
NN 3414 [2532, 5509]

Parameter Method Max Like 90% CI

𝑛𝑛0
RF .411 [0.229, 0.908]
AB .420 [0.225, 0.908]
NN .383 [0.215, 0.971]

𝑛𝑛1
RF 1.878 [1.101, 2.400]
AB 1.859 [1.098, 2.469]
NN 1.906 [1.011, 2.545]

𝑛𝑛2
RF .978 [-5.185, 4.680]
AB .836 [-5.150, 4.532]
NN .0954 [-5.148, 3.869]

𝑛𝑛3
RF -8.804 [-9.463, -0.474]
AB -9.167 [-9.488, -0.520]
NN -9.697 [-9.502, -0.459]

𝑧𝑧1
RF 3.403 [1.451, 8.423]
AB 3.553 [1.305, 8.353]
NN 3.246 [1.385, 7.927]

𝑧𝑧2
RF 6.600 [5.261, 9.800]
AB 6.804 [5.222, 9.818]
NN 6.675 [4.468, 9.759]

𝑁𝑁exp
RF 3919 [2965, 6894]
AB 3955 [2893, 6839]
NN 3096 [2536, 5366]

𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺 𝑧𝑧 = 𝑛𝑛0 �
(1 + 𝑧𝑧)𝑖𝑖1 , 𝑧𝑧 ≤ 𝑧𝑧1

1 + 𝑧𝑧1 𝑖𝑖1−𝑖𝑖2(1 + 𝑧𝑧)𝑖𝑖2 , 𝑧𝑧 > 𝑧𝑧1

Equation 1

Equation 2

Equation 3

Equation 4 gives the one-break equation for the commoving GRB rate in units of 𝐺𝐺𝐺𝐺𝐺𝐺−3𝑦𝑦𝑦𝑦−1, while Equation 5 gives the two-break equation for the 
commoving GRB rate.  The variables 𝑛𝑛i and 𝑧𝑧i used in Equation 1 and Equation 2 were allowed to vary.  The ranges and prior distributions of these variables 
are given in Table 1 and Table 2.

Equation 5𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺 𝑧𝑧 = 𝑛𝑛0 �
(1 + 𝑧𝑧)𝑖𝑖1 , 𝑧𝑧 ≤ 𝑧𝑧1

1 + 𝑧𝑧1 𝑖𝑖1−𝑖𝑖2 1 + 𝑧𝑧 𝑖𝑖2 , 𝑧𝑧1 < 𝑧𝑧 ≤ 𝑧𝑧2
1 + 𝑧𝑧2 𝑖𝑖2−𝑖𝑖3 1 + 𝑧𝑧1 𝑖𝑖1−𝑖𝑖2(1 + 𝑧𝑧)𝑖𝑖3 , 𝑧𝑧 > 𝑧𝑧2

Figure 1: Complied SFR data from Yüksel et al. (2008)

Figure 2: (Graff et al. 2015) 𝐹𝐹𝑑𝑑𝑒𝑒𝑖𝑖(𝑧𝑧𝑖𝑖) computed for three different MLAs 
with the constant flux cut and analytic form used in Howell et al (2014)

Equation 4

Table 1: Prior ranges and distributions for 
the one-break GRB rate parameters Table 3: Prior ranges and distributions for 

the two-break GRB rate parameters

Table 2: Maximum likelihood estimates and central 90% credible intervals for 
the one-break redshift distribution parameters

Table 4: Maximum likelihood estimates and central 90% credible intervals for the 
two-break redshift distribution parameters

I ran a two-break model proportional to 
the SFR as found in Hopkins and 
Beacom (2008) by using their 
parameters 𝑛𝑛1,𝑛𝑛2,𝑛𝑛3, 𝑧𝑧1, 𝑧𝑧2 =
3.28, −0.26, −8.0, 1.04, 4.48 and 

varying 𝑛𝑛0. The results of this analysis 
are shown in Figure 7. The likelihood of 
this model was far less than my one-
break or two-break; 84.22 vs. 99.43 and 
99.23. In this case the Bayesian 
evidence does show a strong preference 
for the one-break model over the model 
proportional to the SFR.

Star Formation Rate Model

The BAMBI algorithm (Graff et al. 2012) was used to 
perform the Bayesian parameter estimates on the 
variables. Table 3 and Table 4 shows the results of the 
analysis.
The posterior distribution of the parameters shown in 
Figure 3 and Figure 4 use real data samples of 66 GRBs 
from Swift and the detection fraction found from the 
random forest MLA.  The dashed red line shows the 
maximum likelihood value from Table 2 and Table 3.  The 
dashed black lines show the 5%, 50%, and 95% 
quantiles.
Figure 5 and Figure 6 shows the distribution of the 
model parameters. The top graph plots the max 
likelihood 𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺(𝑧𝑧), while the lower plots max likelihood 
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧)/𝑑𝑑𝑧𝑧. Both of these are shown in black. The blue 
lines show 200 models with randomly chosen 
parameters from the posterior. In the lower plot, the 
dashed line shows the maximum likelihood for 
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖(𝑧𝑧)/𝑑𝑑𝑧𝑧 and the red boxes show the distribution of 
observed GRB. The evidence value for the one-break

Figure 3: Posterior distribution for the 66 GRBs from Swift using 
random forest for the one-break model.

Figure 4: Posterior distribution for the 66 GRBs from Swift using 
random forest for the two-break model.

Figure 5: The distribution of the one-break model 
parameters for the plots of 𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺(𝑧𝑧), and 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧)/𝑑𝑑𝑧𝑧

Figure 6: The distribution of the two-break model 
parameters for the plots of 𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺(𝑧𝑧), and 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧)/𝑑𝑑𝑧𝑧

Figure 8 shows the max 
likelihood 𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺(𝑧𝑧) for the 
one-break and two-break 
model as well as the fit I found 
using Hopkins and Beacom’s
parameters.  Along with these 
three graphs are the GRB rate 
found in Lien et al (2014) and 
the GRB rates following SFR 
from Hopkins and Beacom
(2006) and Yükse et al. 
(2008). 
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model was 99.43  +/- 0.0441 and the two break was 99.23  +/- 0.0450. The Bayesian analysis does not find 
preference for either model, and thus does not support the additional complexity of the two-break model, 
which tends to mimic the results of the one break model.
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