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Abstract

Long GRBs could be a probe to conditions of star formation in the early universe since GRBs can
be seen in a wide range of redshifts, including high redshifts (z > 6). To better measure the SFR
using long GRBs, it is important to account for the detection efficiency of Swift as a function of
redshift. Swift uses a complex trigger algorithm with more than 500 trigger criteria, thus introducing
complicated selection effects on GRBs. Recently in Graff et al (2015), the Swift BAT triggering
algorithm was modeled using machine learning algorithms (MLAs) and the detection efficiency of
Swift was measured. In this research I reproduced the detection fraction found in Graff et. al. (2015)
and found the detection fraction for a flatter luminosity distribution. This was applied in a Bayesian
study of the GRB rate distribution. The results show a difference in the observed SFR rate and the
long GRB rate.

Introduction

Gamma-ray bursts (GRBs) are some of the most
energetic events in the known universe. In just a
couple of seconds, GRBs release more than 1051

ergs making them the most powerful explosion
since the big bang. Because of this, GRBs remain
luminous even at high redshift, making them one
of the few objects seen at redshifts >≈ 6. There
are two types of GRBs observed: long GRB and
short GRB, which are divided based on their light
curves and duration. Short GRBs are thought to
come from the merger of two compact objects such
as neutron stars, while long GRBs comes from the
core collapse of a massive star. Long GRBs have
also found to be connected to Type Ic supernovae
(Woosley and Bloom 2006).

GRBs are particularly important for studying
the star formation rate (SFR). At high redshifts,
tracing the SRF is very difficult due to the fact
that it is hard to see out so far. This results in
estimates of the SFR differing by more than an or-
der of magnitude as seen in figure 1. GRBs should
be able to trace the SFR since they can be seen
at high redshifts and are the result of the death of
a massive star. GRBs could also be useful at low
redshifts since they can provide measurements for
galaxies normally too dim to see. Previous studies
have tried to measure the intrinsic GRB redshift
and luminosity distributions and have found that
it differs from the SFR (e.g. Yuksel et al. 2008;
Kistler et al. 2008; Butler et al. 2010; Wander-

man & Piran 2010; Lien et al. 2014; Graff et al.
2015; Graham & Schady 2015).

Figure 1: Complied SFR data from Yüksel et al.
(2008)

Swift Challenge

The Swift Gamma-Ray Burst Mission (Gehrels et
al. 2004) was launched in 2004. It’s autonomous
rapid-slewing capabilities allow it to quickly de-
tect and localize GRB. This permits ground-based
observatories to follow up and measure the GRB’s
redshift. The burst alert telescope (BAT) on Swift
uses a trigger algorithm with > 500 rate trig-
gers. This complex trigger algorithm successfully
increases the number of GRB detected, yet makes
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estimating the detection fraction more difficult.
The complicated trigger introduces complicated
selection effects on GRBs. Previous studies es-
timate the trigger algorithm using a flux detec-
tion threshold. This is not a good estimate since
the trigger criteria on BAT are based on pho-
ton count rates with an addition image trigger
(≈every minute) using a real image for missed
bursts.

In Lien et. al. (2014) the trigger algorithm
was simulated using code that followed the same
trigger criteria as BAT. This simulator was able
to accurately represent the trigger algorithm. The
problem with the trigger simulator was that is
took ≈ 10 secs to simulate a single burst. Run-
ning the simulator with a large number of burst to
cover over a wide distribution of redshift is very
computationally intensive. This makes the sim-
ulator impractical for very large sets of bursts.
Graff et. al. (2015) addressed the problem in the
Lien et. al. (2014) simulator by using MLAs to
speed up the process. The MLAs were trained
and tested using data generated by the Lien et.
al. (2014) simulator. The generated data was
based of a luminosity distribution function (Eq 1)
with constant parameters x = −0.65, y = −3 and
L∗ = 1052.05ergs/s.

φ(L) =

{
( LL∗

)x L ≥ L∗
( LL∗

)y L < L∗
(1)

The results from previous studies for the detection
fraction are shown in figure 2.

Figure 2: Fdet(zi) for three different MLAs from Graff
et. al. (2015) with the constant flux cut and analytic
form used in Howell et al (2014)

In this study, I reproduced the detection frac-
tion found in Graff et. al. (2015) using random
forests (RFs), found the detection fraction for a
flatter luminosity distribution and performed a

Bayesian analysis on the data using a one-break
and two-break model.

Reproducing Detection Fraction

A Random Forest algorithm is an ensemble of
multiple decision trees. Each non-leaf node of the
decision tree makes a decision based on one of the
input variables. Each leaf node is a target value.
An import feature of decision trees is that they
can create partition recursively (Breiman et. al.
1984; Quinlan & Ross 1993). With each split the
tree is making a decision based on a smaller sub-
set of data then the one before. RFs improves on
this method by averaging multiple decision trees
together. To create multiple trees from one data-
set you use a technique called the bootstrap. This
means that each tree uses a random subset of the
data. Another trick used in Random Forests is to
use a random selection of features to split when
deciding partitions. This reduces similarities be-
tween trees.

log10(L) luminosity of the GRB
z redshift
r distance from cnter of detection grid of

peak
φ azimuthal angle in the detector grid of

peak
bin size emit source time bin size

α Band function parameter
β Band function parameter

log10(Epeak) peak of energy spectrum of the GRB
bgd 15 25eV background count rate in 15-25eV band
bgd 15 50eV background count rate in 15-50eV band
bgd 25 100eV background count rate in 25-100eV

band
bgd 50 350eV background count rate in 50-350eV

band
θ incoming angle of GRB

log10(Φ) incident flux of GRB
ndet number of active detector pixels (con-

stant)
trigger index 0 for non-detection and 1 for detection

Table 1

A set of 15 parameters were used as inputs to the
algorithm (Table 1). I tried multiple data sets
with various number of samples to produce a sim-
ilar detection fraction as in Graff et. al. (2015).
These data sets came from the data generated for
Lien et. al. (2014). For each data set, 4

5 of the
data was used for training with the remaining 1

5
left out for testing. Additionally each model was
then tested against 5 separate data sets each with
≈ 10000 samples. A summary of these data sets
and their test scores are shown in table 2.

Name of
Data Set

Number of
Samples

Accuracy
against
training set

Accuracy
against
test set

Set 1a 4100 98.4% 94.4%
Set 1b 5900 99.2% 94.0%
Set 1 Com-
bined

10000 99.1% 95.1%

Set 2 10000 99.2% 94.9%
Set 1 and 2
Combined

20000 99.4% 96.2%

Table 2
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Figure 3: An example decision tree from the Set 1 and 2 Combined RF model. Each non-leaf node shows the
parameter used for branching, the Gini factor, and the number of samples used to make the decision. Each
leaf node shows the Gini factor, and the number of samples ending at that node, and the number of samples
that were detected or not.

The detection fraction Fdet(z) is computed by
using the ML model to predict the percentage of
bursts measured at certain redshifts. Between the
redshifts of [0, 10], 105 GRB are simulated at 1001
evenly spaced redshifts. These points are then
used for a spline interpolation to get Fdet(z). A
comparison of the detection fraction produced by
the data sets is shown in Figure 4

Figure 4: The detection fraction from Graff et. al.
(2015) along with the five from the new RF models.

Figure 5: The detection fraction from Graff et. al.
(2015) (red) with the best matching RF model (blue).

From these results you can see that the Set 1
and 2 combined best matched the detection frac-
tion as in Graff et. al. (2015) and was also the
most accurate at predicting. Since this model was
the closest to the Graff et. al. (2015) detection
fraction, the detection fraction was recalculated
using 105 GRB are simulated at 100001 evenly
spaced redshifts to get a more accurate function.
This is shown in Figure 5. An example decision
tree with a maximum depth of three from this MF
model is shown in Figure 3.

Figure 6: Grid search results for Set 1 and 2 Com-
bined RF.

The hyper-parameters for all the the RF mod-
els produced above were optimized using a 5-
fold cross validation grid search. The choices for
hyper-parameters are as follows:

min samples split ∈ [2, 4, 8, 16, 32]

max features ∈ [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

The min samples split is the minimum number of
samples required at a node to split the node. The
max features parameter is the maximum number
of features to consider when looking for the best
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split. The results of the grid search are shown
in Figure 6. The values of the best fit model are
min samples split = 2 and max features = 11.

New Detection Fraction

The next step was to build a RF model based on
a flatter luminosity distribution

φ(L) =

{
( LL∗

)
√
x L ≥ L∗

( LL∗
)
√
y L < L∗

(2)

The same 15 parameters from Table 1 were used as
inputs to train the next set of RF models. I used a
date set with 10,000 samples where 1

5 was left out
for testing. The accuracy of this model against
the training set is 95%. This is much lower than
the previous models.

The hyper-parameters for this models were
also optimized using a 5-fold cross validation grid
search. The choices for hyper-parameters are as
follows were the same as above. The results of
the grid search are shown in Figure 7. The values
of the best fit model are min samples split = 16
and max features = 13. The difference between
the best values and the worst values was only
.5% which was similar to the previous grid search.
However this search did not show a correlation
between min samples split and max features as
the previous grid search did.

Figure 7: Grid search results for variable luminosity
distribution RF.

The detection fraction was computed by sim-
ulating 105 GRB at 1001 evenly spaced redshifts.
A comparison of this detection fraction and the
previous detection fraction is shown in Figure 8.
The detection fraction found with the flatter lu-
minosity was higher then before.

Figure 8: The detection fraction from Graff et. al.
(2015) with the best matching RF model. The func-
tion from Graff et. al. (2015) is shown in red, my
reproduced function shown in blue, and the flatter lu-
minosity function shown in green.

Analysis of GRB

We can also fit a model to gain information about
the rate of GRB. The number of intrinsic GRBs
occurring in Swift’s field of view is given by Equa-
tion 1.

Nint(zi) =
4π

6
∆tobsRGRB;dz(zi)dz (3)

Where the factor of 4π/6 accounts that Swift
can only observe a sixth of the sky at any time.
∆t = .8 which is the amount of time Swift spends
observing per year. RGRB;dz(z) is the comoving
rate accounting for time dilation and comoving
volume.

The expected number of observed GRBs comes
from multiplying Equation 1 by the detection frac-
tion.

Nexp(zi) =
4π

6
∆tobsRGRB;dz(zi)Fdet(zi)dz (4)

Using Equation 1 and 2, the log-likelihood is
found to be Equation 3, where {i}det is each de-
tection.

L(n) = −Nexp +
∑
{i}det

log(Nexp(zi)) (5)

The full deviation of the log-likelihood can be
found in Graff et. al. (2015).
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One-break vs. Two-break

In this analysis I test two models for RGRB(z) to
find find the best fit: a one-break model shown in
Equation 6 and a two-break model shown in Equa-
tion 7. The variables ni and zi used in Equation
6 and Equation 7 were allowed to vary.

RGRB =

{
(1 + z)n1 z ≤ z1

(1 + z)n1−n2(1 + z)n2 z > z1

(6)

RGRB =


(1 + z)n1 z ≤ z1
(1 + z)n1−n2 (1 + z)n2 z1 < z ≤ z2
(1 + z)n2−n3 (1 + z)n1−n2 (1 + z)n2 z > z2

(7)

The BAMBI algorithm (Graff et al. 2012) was
used to perform the Bayesian parameter estimates
on the variables. This uses a real data samples of
66 GRBs from the Fynbo et.al. (2009) study to fit
the model and the detection fraction found from
my random forest model.

Figure 9: Posterior distribution for the 66 GRBs from
Swift using random forest for the one-break model.
The red dashed lines show the maximum likelihood
value. Contour lines are shown every 68%, 95%, and
99%. Dashed lines are show 5%, 50% and 95% quan-
tiles. Ntot is the predicted total number of GRB in
the universe per year.

Figure 10: Posterior distribution for the 66 GRBs
from Swift using random forest for the two-break
model. This is similar to Figure 9

The posterior distribution of the pa-
rameters are shown in Figure 9 and Fig-
ure 10. The best fit parameters for the
one-break model is {n0, n1, n2, z1, Ntot} =
{.49, 1.68,−2.73, 6.82, 4520} and for the two-
break model {n0, n1, n2, n3, z1, z2, Ntot} =
{.48, 1.69, .42,−4.89, 5.46, 7.95, 4460}. Both mod-
els found similar values for n0, n1 and Ntot but
had very different values for n2. This is because
neither model was able to constrain the high red-
shift parameters to a highly probably value.

The distribution of models for are are shown
in Figure 11 and Figure 12. These plots show a
random selection of 200 models selected from the
posterior as light blue lines, with the most likely
values in black. These plots also show that the
model is not well constrained at high redshifts.

The Bayesian evidence value for the one-break
model was 99.43 +/- 0.0441 and the two break
was 99.23 +/- 0.0450. The Bayesian analysis does
not find preference for either model, and thus does
not support the additional complexity of the two-
break model, which tends to mimic the results of
the one break model.

Model Proportional to SFR

I ran a two-break model proportional to the
SFR as found in Hopkins and Beacom (2008)
by using their parameters {n1, n2, n3, z1, z2} =
{3.28, 0.26, 8.0, 1.04, 4.48} and varying n0. The
results of this analysis are shown in Figure 13.
The model was again compared to the Fynbo et.al.
(2009) data, and used the RF detection fraction.
The best fit parameter for n0 is .33.
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Figure 11: Distribution of model parameters for one-
break model. The top plot shows RGRB(z). The light
blue line shows a random selection of 200 models se-
lected from the posterior. The black line shows the
maximum likelihood points. The bottom plot shows
Nexp/dz. The red boxes are the GRB selected from
the Fynbo study.

Figure 12: Distribution of model parameters for two-
break model. This is similar to Figure 11

Figure 13: Distribution of model parameters for SFR
proportional two-break model. This is similar to Fig-
ure 11

The Bayesian evidence of this model was far
less than my one- break or two-break; 84.22 vs.
99.43 and 99.23. In this case the Bayesian evi-
dence does show a strong preference for the one-
break model over the model proportional to the
SFR. Figure 13 shows that the predicted number
of detected GRB does not fit the amount of ob-
served. With a model proportional to SFR, one
would expect to see many more GRB at redshifts
≈ 1− 2 and less GRB at redshifts around 3.5.

Model with Updated GRB

In both the one-break and two-break model the
high redshift parameters were hard to constrain.
The Fynbo et al (2009) dataset comprised of
66 GRB, with only two at high redshifts. This
provided little constraint on the higher redshift
population z > 4. In the past seven years
since the Fynbo sample there have been hun-
dreds more GRBs detected. The SHOALS (Per-
ley et al 2016) sample contains 112 GRB and
can be used to incorporate more recent data.
The results of fitting the SHOALS sample are
shown in Figure 14. The best fit parameters
for the one-break model is {n0, n1, n2, z1, Ntot} =
{1.18, 1.37,−2.95, 6.01, 6190}. Even with the ad-
ditional high redshift GRB, the high redshift pa-
rameter n2 was still not able to be constrained.
These values are graphed in Figure 15. In this
Figure you can see that the gap between predicted
observed GRB and real observed GRB increased
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at a redshift of 1.5 from the Fynbo model.

Figure 14: Posterior distribution one-break model
based on SHOALS sample (Perley et al 2016). This is
similar to Figure 9

Figure 15: Distribution of model parameters for one-
break model. This is similar to Figure 11 except that
the red boxes come from the SHOALS sample (Perley
et al 2016).

To compare this model with the Fynbo model,
n0 must be normalized for the same about of
time. Swift observes about 100 GRBs per year.
This means that the Fynbo sample contains less
than a year’s worth of GRBs (66 GRBs) and the

SHOALS sample has more than a year’s worth
(112 GRBs). For the Fynbo sample, n0 must
be multiplied by 100

66 which gives .74. For the
SHOALS sample, n0 must be multiplied by 100

112
which gives 1.05. n1, n2, and z1 are not affected
since they don’t need to be normalized for a length
of time. A comparison of all the models is shown
in Figure 16.

Figure 16: Comparison of GRB rate models.

While the SHOALS model wasn’t able to give
more insight to higher redshift rates, it did pro-
vide an interesting observation for lower redshifts.
The SHOALS model predicted a higher number
of GRB at redshifts around 1-2 than the Fynbo
model. This number came closer to the predic-
tions from the SFR. Both models agreed on the
rate of GRB around a redshift of 3. This agreed
rate was higher than the SFR prediction.
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