
Using a Secure Environment to Enable Community-level Suicidality
Research for the CLPsych 2021 Shared Task

Anjali Mittu
University of Maryland
amittu@umd.edu

Sean MacAvaney
IR Lab, Georgetown University

sean@ir.cs.georgetown.edu
University of Glasgow

Glen Coppersmith
Qntfy

glen@qntfy.com

Jeff Leintz
NORC at the University of Chicago
Leintz-Jeff@norc.org

Philip Resnik
University of Maryland
resnik@umd.edu

Abstract
Progress on NLP for mental health — indeed,
for healthcare in general — is hampered by
obstacles to shared, community-level access
to relevant data. We report on what is, to
our knowledge, the first attempt to address
this problem in mental health by conducting
a shared task using sensitive data in a secure
data enclave. Participating teams received ac-
cess to Twitter posts donated for research, in-
cluding data from users with and without sui-
cide attempts, and did all work with the dataset
entirely within a secure computational environ-
ment. We discuss the task, team results, and
lessons learned to set the stage for future tasks
on sensitive or confidential data.

1 Introduction

In natural language processing, and in AI more
generally, progress depends on data.1 The most sig-
nificant progress on a problem takes place when an
entire community is working on the same dataset
at the same time; for example, the wide availability
of speech recognition today is a result of decades
of research using DARPA benchmark datasets and
evaluations for speech-related tasks (Juang and Ra-
biner, 2005).

In healthcare, however, community-level activity
is an enormous challenge. Laws and regulations
related to data confidentiality create obstacles to
access, including significant administrative over-
head such as data use agreements and significant
technical overhead involving arrangements for se-
cure data distribution, storage, and management
(Lane and Schur, 2010). In mental health and par-
ticularly crisis detection, missteps like Samaritans
Radar raise highly public red flags despite well-
intentioned goals (Horvitz and Mulligan, 2015;

1This document is an extended version of Macavaney et al.
(2021), submitted in partial fulfillment of the requirements
for Master’s of Science degree in Computer Science at the
University of Maryland with permission of the co-authors.

Resnik et al., 2021). All these legal, regulatory,
operational, and public perception risks naturally
make potential data providers skittish about data
sharing. As a result, important research in health-
care is balkanized, with community efforts scat-
tered among different datasets in ad hoc fashion as
different teams work with the data they are able to
gain access to. Or potentially it doesn’t take place
at all, as talented researchers go work on other
problems where obtaining data is just easier.

Secure data enclaves are one solution to this
problem (Lane and Schur, 2010). The key idea in a
data enclave is to bring researchers to sensitive data,
rather than disseminating data out to researchers.
A data enclave provides secure remote access to
data using carefully designed statistical, technical,
legal and operational controls. Computation on an
enclave is done using a copy of the data residing
there without full networking access, meaning that
nothing can be imported or exported without dis-
closure review. This does not replace necessary
steps like IRB approvals, data use agreements, and
record de-identification; for example, data enclave
users can still look at private data within the enclave
and need to agree not to attempt de-anonymization.
However, it drastically simplifies community-level
access. A single, comprehensive description of se-
curity provisions can be created for data providers
and ethical review boards, and data providers need
to enter into data use agreements only with the
enclave, rather than with individual teams.

To our knowledge, the CLPsych 2021 shared
task is a first-of-its-kind endeavor: as far as we
know, it is the first time a community-level shared
task with sensitive mental health data has been
conducted on a data enclave, and more generally
shared tasks on sensitive data are rare in the NLP
and machine learning communities. In addition,
although uses of data enclaves are often centered
on the use of analytics tools, in this shared task

the environment was designed to support the full
arsenal of NLP and machine learning methods. We
accomplished this by partnering with NORC at the
University of Chicago. Since 2006, the NORC
Data Enclave® has served U.S. state and federal
agencies, research institutes, foundations, and uni-
versities by securely housing and providing re-
mote access to confidential data. In a collaborative
project with University of Maryland, NORC has
developed the UMD/NORC Mental Health Data
Enclave (henceforth the Enclave, for short), a sub-
set of NORC Data Enclave infrastructure designed
specifically with the requirements of mental health
NLP and machine learning research in mind.

Data for this shared task were provided by Qntfy,
which runs OurDataHelps.org, an online platform
that permits donations of digital life data (includ-
ing social media) for the purposes of advancing re-
search in mental health and wellbeing. Individuals
come from a range of lived experience with men-
tal health, specifically related to this shared task:
individuals who have survived suicide attempts,
loved ones of people who have died by suicide,
and people who just want to help. For this shared
task, Qntfy established a data provider agreement
with NORC, and NORC executed data use agree-
ments with the participating teams. The University
of Maryland, College Park IRB reviewed and ap-
proved a protocol for research with, and sharing
of, the OurDataHelps data. The arrangement here
therefore exemplifies the advantages of data en-
claves discussed above. For the data provider, it
was much easier to work out an agreement with
just a single entity running an established secure
infrastructure, which significantly lowered the bar
for sharing data with multiple teams. In addition,
NORC’s platform and processes for team access,
platform security, and import/export review created
a far greater level of confidence in privacy con-
trols than sending data out to a large number of
far-flung teams with heterogeneous environments.
For teams, this provided a rare opportunity to work
with sensitive mental health data containing actual
outcomes, not proxy data as is more common in so-
cial media mental health research and which can be
problematic for a variety of reasons (Ernala et al.,
2019).

The shared task itself involved assessment of sui-
cide risk via prediction of suicide attempts, based
on the natural language of users on Twitter. There
were two subtasks: Subtask 1 involved assessing

suicide risk given 30 days of tweets prior to the
date of an attempt (or a corresponding date when
no attempt was made), and Subtask 2 involved as-
sessing suicide risk given the prior six months of
tweets.

A set of 21 teams signed up and were onboarded
on the Enclave. A total of five teams ultimately
submitted systems by the deadline. All teams have
been given several months of additional access and
support on the Enclave, in order to permit contin-
ued experimentation. We are hopeful that results
obtained during this extended time period will lead
to publications beyond CLPsych.

In this overview paper, we provide not only a
summary overview the shared task itself, in terms
of the research problem and participating teams’
findings about predicting suicide risk from Twitter
data, but also a retrospective analysis of conducting
a shared task in a secure enclave, including lessons
learned and recommendations for future tasks of
this kind.2

2 Background and Related Work

A number of recent articles discuss the use of
NLP, machine learning, and social media in service
of mental health. As important motivating back-
ground, a meta-analysis by Franklin et al. (2017)
concludes that prediction of suicidal thoughts and
behaviors has not improved in fifty years, encour-
aging a shift to algorithmic and machine learning
approaches. Schafer et al. (2021) provide signifi-
cant empirical support for this view via another
meta-analysis looking specifically at traditional
theory-driven versus machine learning approaches
to prediction of suicide risk, demonstrating that the
latter are significantly more effective at prediction.3

Naslund et al. (2020) and Lee et al. (2021) provide
overviews that include thoughtful, big-picture com-
mentary on research and clinical applications for
mental health taking advantage of NLP, machine
learning, and social media. Resnik et al. (2021) of-
fer an overview of issues more specifically focused

2We would be happy to discuss logistical issues, and share
details and specific language from our IRB protocol, data
provider, and data use agreements, in order to facilitate others
who would like to organize shared tasks similar to this one.
Interested readers should contact clpsych-2021-shared-task-
organizers@googlegroups.com.

3In regard to the goals of prediction versus scientific ex-
planation and understanding, it is worth noting the argument
by Yarkoni and Westfall (2017) that psychology research as
a whole, including research with explanatory goals, would
benefit by taking a predictive approach.

on using naturally occurring language as a source
of evidence in suicide prediction.

One running theme throughout discussions of
this kind involves the availability of data to work
with, and the interplay, or even tension, between
the need for research and the need to respect pri-
vacy and other ethical considerations. Horvitz and
Mulligan (2015) provide one short, useful discus-
sion specifically focused on data and privacy, and
Benton et al. (2017) and Chancellor et al. (2019)
discuss ethical issues specifically with regard to
social media and work on mental health. Lane
and Schur (2010) provide a valuable entry point
to the concept of data enclaves as a way to bal-
ance the need for data access in order to make
progress in healthcare with respect for patient pri-
vacy — this concept ties in directly with the call by
Schafer et al. (2021) for community-level mental
health datasets to be easily available for research
so that the predictive ability of models can be com-
pared and research can be replicated. Those kinds
of comparisons and replications are instrumental
in modern data-driven research because without
them it is impossible to gain insight into which
approaches are most promising or to rule out the
possibility that apparent differences are related to
idiosyncratic differences in data.

Related, the most current paradigms in NLP and
machine learning involve both general-purpose pre-
training and task-specific fine-tuning. To some
extent, pre-training data may capture generaliza-
tions about language that transfer well to problems
in the mental health space. However, many off-
the-shelf language resources that are commonly
used, such as BERT (Devlin et al., 2019), are built
from sources such as books and Wikipedia entries.
These may translate poorly to systems dependent
on social media posts from Twitter, Facebook, or
an online discussion forum. It is well known that
systems perform better when they are trained on
materials similar to the materials the system will
run on (Alsentzer et al., 2019; Beltagy et al., 2019).
Therefore using task-specific data from immedi-
ately relevant sources as training data for social
media based mental health tasks is a high priority
that requires attention.

Another theme found in related literature in-
volves the nature and quality of the variables being
predicted. The sensitivity of mental health data
has led to a proliferation of proxy variables taken
from publicly available data rather than ground-

truth clinical variables or real-world outcomes (e.g.
De Choudhury and De, 2014; Coppersmith et al.,
2014; Yates et al., 2017; Shing et al., 2018; Cohan
et al., 2018; Thorstad and Wolff, 2019). As two
particularly well known and influential examples,
Coppersmith et al. (2014) infer mental health di-
agnoses of Twitter users by looking for publicly
self-reported diagnoses, and De Choudhury et al.
(2016) infer mental health progressions to suici-
dal ideation by examining when Reddit users shift
from mental health subreddits to the SuicideWatch
subreddit. Such data tend to have the advantages of
being readily accessible and large in size. However,
Ernala et al. (2019) note a variety of problems and
limitations in using proxies rather than clinically
grounded variables. Coppersmith et al. (2018) of-
fer a rare exception in this kind of work, using an
ethical process of data donation to obtain social me-
dia data with outcomes for research on prediction
of suicide attempts; our shared task is based on a
subset of their data.

3 Data

We briefly describe our data sources, and how we
constructed the shared task datasets for binary clas-
sification tasks.

3.1 Data sources

We began with data donated to the OurData-
Helps.org platform, discussed in greater detail by
Coppersmith et al. (2018). Donations to the plat-
form include data from people who have survived
a suicide attempt, data from people who died by
suicide that has been donated by loved ones, and
data donated by people who have not attempted sui-
cide but want to help. When donations take place,
a questionnaire is filled out that collects basic de-
mographic data and mental health history. This
includes the number of past suicide attempts and
dates associated with them, although dates are not
provided in all cases.

Although the platform permits collection of a
wide range of data, including, for example, social
media, fitness, and wearable data, in this shared
task we restricted our attention to Twitter data and a
subset of basic information from the questionnaire.
Only publicly available tweets are used, typically
visible to friends and family, and these were de-
identified before being provided to the Enclave.

On the Enclave, participants also had access to a
copy of the UMD Reddit Suicidality Dataset (Shing

et al., 2018; Zirikly et al., 2019). This dataset was
used by one of the teams (NUSIDS) in their sub-
mission.

In addition, a non-sensitive practice dataset us-
ing the shared task data format was provided to
participants so they could work on developing
and debugging their systems outside of the En-
clave. It was based on a modified version of the
depression-detection dataset (Wang et al.,
2019).4

3.2 Users with Suicide Attempts
In the version of the data we began with, there
are 3,631 users, 1,613 of whom attempted (and
possibly died by) suicide. From this version, we
imposed several filters. We only considered users
who had donated Twitter data and who had reported
their gender and date of birth in the questionnaire,
in order to match users with a suicide attempt to a
control user. If a user had attempted suicide, we
only included them if they had a date associated
with the attempt, a necessary restriction in order
to examine tweets in the time period leading up
to the attempt. For users with multiple attempts,
we only considered the most recent attempt having
a date. Filtering in this way left 250 users with
suicide attempts, associated dates, and data prior to
the attempt. For Subtask 1, we restricted the set to
users who had made posts in the 30 days prior to
their suicide attempt, a total of 68. For Subtask 2,
we restricted the set to users who had made Twitter
posts during the six months prior to the attempt,
which included a total of 97 users. Teams were
provided with anonymized user IDs, the date of
the most recent suicide attempt (if applicable), and
a list of the user’s de-identified tweets from the
applicable time span.

3.3 Control Users
Similar to Coppersmith et al. (2018), we included a
set of control users matched one-to-one with users
who had attempted suicide, based on having the
same gender, similar age (within 5 years), and sim-
ilar number of tweets. These criteria resemble pre-
vious matching in the 2015 CLPsych shared task
(Coppersmith et al., 2015) and in Coppersmith et al.
(2018). Age and gender are common controls in the
mental health space, and we chose to match using
a similar number of tweets so that corresponding

4https://github.com/seanmacavaney/
clpsych2021-shared-task/tree/main/
practice-dataset

Subtask 1 Subtask 2
Total # of Users 114 / 22 164 / 30
Users Under 30 104 / 15 138 / 23

Table 1: The total number of users in each subtask and
the number of users under the age of 30. The numbers
in the table are given as (training set) / (test set)

Subtask 1 Subtask 2
Female 118 168
Male 12 20
Non-Binary 4 4
Other 2 2

Table 2: The distribution of gender across all users.

users in the dataset would be represented by similar
quantities of social media evidence. For each user
with a suicide attempt, we found a match by first
finding all users matching age and gender, then se-
lecting the user with the closest number of tweets.
Tweets taken from the control user were from the
same time frame as their match who had an attempt
in order to minimize differences in context, such as
tweets about world events.

Table 1 shows the final number of users in each
subtask and Table 2 shows the age distribution of
users. In the shared task, we saved 15% of the
users for the test set; these numbers are shown in
the table. For both subtasks, most of the users were
female under the age of 30. Within the time period,
for Subtask 1, users had an average of 24 tweets
per person and in Subtask 2, there were an average
of 102 tweets per person.

3.4 Detailed Data Preparation

The filtering and matching process is done in multi-
ple steps and is fully implemented in Python. This
process is modular in order to make it easier to only
run one step of the process at a time. The first step
is to ingest the users and twitter data from OurData-
Helps.org and standardize the data. Both files are
flattened, unused fields are removed and duplicate
tweets are removed. This process removes users
without an age, gender or tweets and users who
have suicide attempts but are missing the date for
the attempt. The code for this script is given in
Appendix A.1.

The next step is to create the pairs and split the
pairs into train/test sets. This script matches users
into pairs as described above. The script maintains
a list of users who are already being used as a

https://github.com/seanmacavaney/clpsych2021-shared-task/tree/main/practice-dataset
https://github.com/seanmacavaney/clpsych2021-shared-task/tree/main/practice-dataset
https://github.com/seanmacavaney/clpsych2021-shared-task/tree/main/practice-dataset

{
"id": "str",
"label": "bool",
"date_of_attempts": "str",
"tweets": [{

"id": "str",
"text": "str",
"created_at": "str"

}]
}

Listing 1: Format of shared task data

control user so that the same user does not appear
in a pair twice. Both subtask datasets have the
same train/test split for users who appear in both
datasets. Since the same user with an attempt can
be matched with a different control user in the two
subtask datasets, the script would not put control
users from the test set of one subtask in the train
set of the other and vice versa. The code for this
script is given in Appendix A.2.

After the pairs are made, another script is used to
remove tweets which are out of range of tweets for
that subtask. For example, for Subtask 1, this script
removed any tweets that were more than 30 days
before a user’s suicide attempt and any tweets after
a user’s suicide attempt. This script also removed
any users not in a matched pair. The code for this
script is given in Appendix A.3.

The last script combines the users and tweets into
one file and formats the data in its final form. The
format for the final data file is given in Listing 1 and
the code for this script is given in Appendix A.4.

4 Baseline

A baseline system was provided to shared task
participants to use or build upon.5 Baseline pre-
processing includes several standard steps. First,
we removed all URLs, user mentions, and emo-
jis from the tweets. Whenever a user’s tweet in-
cludes an image, GIF, or link, the links are re-
moved. We tokenized the tweets using the Twitter-
specific Twikenizer and removed stopwords from
the tweets’ text using the default SpaCy (Honnibal
et al., 2020) stopword list.6 Last, we split hashtags
into the words they are made up of: first, we try to
split by camel-case or by underscores; if that fails,
we use a method from HashTagSplitter, attempting
to split into the smallest subset of real words.7

5https://github.com/anjmittu/clpsych2021-shared-task-
baseline

6https://github.com/Guilherme-Routar/Twikenizer
7https://github.com/matchado/HashTagSplitter

Model F1 on Training Set F1 on Test Set

FastText 0.569 0.700
2-Layer HAN 0.600 0.500
3-Layer HAN 0.774 0.593
Logistic regression .522 0.710

Table 3: Results of preliminary baseline systems using
data from Subtask 2. Logistic regression is the model
chosen for the shared task.

The baseline classification model used logistic
regression with the default parameters from SciKit
Learn (Pedregosa et al., 2011), employing unigram
and bigram count vectors.

The entire baseline code is implemented in
python and uses two scripts to build the model
and predict results. The first script performs the
pre-processing as described above. The second
script trains the model and makes predictions on
the test set. The output from the second script is a
tsv file with a user id, label and score for each user
in the test set. This output can then be passed to the
evaluation script which computes the F1, F2 , True
Positive Rate (TPR), False Alarm (Positive) Rate
(FAR), and Area Under the ROC Curve (AUC) for
the predictions. We also provided a submission
verification script to all participants so that they
could verify their submission was formatted cor-
rectly before submitting. The code for all of these
files can be found in Appendix B.

4.1 Preliminary Baseline Attempts
Several other baseline systems were tested before
the shared task began. The additional systems are
described in detail below. The F1 scores from these
baseline systems are shown in Table 3 as well as
the score for the chosen baseline. All results from
these models are using the data from Subtask 2.
FastText FastText (Joulin et al., 2016) is a an
embedding-based classifier which uses bag of n-
grams features, in order to capture some informa-
tion about word order without losing efficiency.
The library is both fast to execute and efficient
in memory usage. We optimized the epoch and
learning rate parameters using a cross-validated
grid-search over a parameter grid. The results of
this search using the data for Subtask 2 is shown
in Figure 1. The best F1 score came from using
50 epochs and a learning rate of 1.5, however the
results of the grid search were very similar across
different combinations. The F1 score using 5-fold
cross-validation on the training set is 0.57 and the
F1 score on the test set is 0.7. While this score is

Figure 1: Grid search results using FastText model with
the data for Subtask 2

close to the chosen baseline, the recall value is 0.73
which is much higher than the chosen baseline.
3HAN Shing et al. (2020) introduces 3HAN, a vari-
ant of the Hierarchical Attention Networks (Yang
et al., 2016), which uses 3-level attention mech-
anism to pay attention to specific features at the
word, sentence and document level. Additional de-
tails about this model can be found in Shing et al.
(2020). We hypothesized that some tweets would
be more indicative of suicide risk than others. We
wanted the model to be able to give more attention
to particular features in the tweets, and to be able
to rank a user’s tweets in order of importance. We
tried a variant of 3HAN which uses 2-levels at the
tweet and user level. This model was implemented
using AllenNLP (Gardner et al., 2017) and con-
sists of four layers: a word-embedding layer, two
Seq2Vec LSTM layers with attention, and last a
fully connected softmax layer. Before the data is
input to the model, it is read by an AllenNLP reader.
The reader tokenizes all the tweets and creates a
multi-dimensional list of tweets for each user. Each
tweet from the user is a list of tokenized words in
the multi-dimensional list. After 8 epochs of train-
ing, the F1 score on the training set was 0.6 and the
score on the validation set was 0.5. This leads us to
believe the model was over-fitting on the training
data.

We tried another variation of the 3HAN model
using 3-levels at the tweet, week and user level.
The tweets for each user were grouped together in
weekly periods. Each user had a list of tweets for
each week and each tweet was a list of tokenized
words. This allowed the model to pay attention
to certain tweets during a week and weight some
weeks more than others. This model consisted of

one more Seq2Vec layer than the model described
above. After 8 epochs of training, the F1 score
on the training set was 0.774 and the score on the
validation set was 0.593. Due to the small number
of users in the data, this model was not able to learn
without overfitting the training data.

5 The Enclave

As discussed in the introduction, data-driven re-
search in mental health, and healthcare more gen-
erally, faces significant obstacles owing to impor-
tant concerns about privacy and data confidentiality.
Data enclaves offer a potential solution (Lane and
Schur, 2010).

NORC at the University of Chicago, an inde-
pendent, non-profit research institution, took on
the operational aspects of running this shared task
on their data enclave. Significant time was spent
working with Qntfy, who were responsible for pro-
viding the OurDataHelps data, and the shared task
organizers, to develop the data provider agreement,
data use agreements, operational policies, support-
ing infrastructure, and technical and operational
support for the organizers and shared task teams.

All aspects of the shared task on the Enclave
were run using exactly the same procedures as
for NORC’s traditional Data Enclave clients, such
as government agencies working with confiden-
tial databases. Teams that worked on the shared
task executed a data use agreement with NORC
and then were “onboarded” to the Enclave, being
provided with account logins, passwords, documen-
tation, procedures for uploading and export (both
requiring human review of the material entering or
leaving the Enclave), and contacts and procedures
for technical support.

The Enclave environment includes two main
parts. The first part is a secure virtual desktop
(using Citrix), accessed via the Data Enclave lo-
gin page through an internet browser. The second
part of the Enclave is NORC’s Mental Health Data
Enclave (MHDE) Cluster on Amazon Web Ser-
vices (AWS). From within the secure Citrix desk-
top, participants use PuTTY ssh to reach a gateway
machine on this cluster. They can run code there
or submit batch jobs using the Slurm cluster man-
agement and job scheduling system.8 The AWS
environment is configured to spin up a new instance
for the duration of the job and then spin it down
when completed, conserving compute resources to

8https://slurm.schedmd.com/

Figure 2: The applications available in the Enclave desktop

Figure 3: Using Slurm to run jobs on AWS

save cost.

Crucially, the Enclave is a closed environment.
Neither the secure desktop nor the AWS cluster
permit access to the Internet. It is not possible to
scp or sftp data. It is not possible to open a
socket in a program that connects externally. It

is not possible to print, print screen, or even to
copy/paste to or from the external environment.

The NORC Data Enclave’s data security model
integrates a portfolio approach with the Five Safes
framework (Ritchie, 2017) to harden the security
posture. This means that bringing materials in, such

as code, data, or other resources, requires an im-
port request process. Each request triggers a robust
review process to provide safe passage of confi-
dential micro-data and ensure imported material
does not contain any virus or code aimed at dis-
abling the capabilities or facilitating unauthorized
access. In order to set up the Enclave environment
and hopefully speed up this process for shared task
participants, it was pre-loaded with major Python
packages and tools (more than 4000 of them), the
shared task baseline code, and shared task data; see
further discussion in Section 9.

Similarly, as a data custodian for restricted data
(e.g. confidential micro-data for federal, state and
commercial clients), NORC must ensure that any
data leaving the NORC Data Enclave is safe and
free of inappropriate disclosures. This means that
there is a request-based procedure for exporting
any material from the Enclave, with formal review
criteria that include both dataset-specific criteria
and general guidelines applied globally across all
requests.

6 Using the Enclave

As discussed in the section above, users could ac-
cess the Data Enclave via a secure virtual desktop
(using Citrix). Once on the virtual desktop, users
had access to applications installed locally on the
desktop itself. This included programming soft-
ware such as RStudio, SAS and Jupyter Notebook,
as well as IDEs and text editing tools. A list of
these applications can be seen in Figure 2. 9

Users are able to access any approved imported
material through the file system on the desktop.
These materials are placed in the user’s drive. Users
also have access to a shared team folder in the
file system. Only the team and the shared task
organisers have access to this folder. Files could be
sent to and from the AWS cluster using the WinSCP
application. Figure 4 shows how the files could be
moved in this way. This allowed users to develop
code on the desktop in an IDE and move it to the
AWS cluster to run on AWS.

Users could ssh onto the AWS cluster using
PuTTY as shown in Figure 5. The AWS cluster has
additional programming software installed such as
Python, Java, Perl and Mallet. Users are able to
run jobs on AWS using Slurm to schedule their
job to run. Through Slurm, users have the option

9We obscure information like usernames, IP addresses, etc.
in all of the enclave photos

Figure 4: Moving files from the Enclave desktop to the
AWS cluster

Figure 5: Using PuTTY to ssh onto the AWS cluster

Figure 6: Submitting an Export request

of running their job on a m4.large instance with 2
vCPUs and 8Gb of memory, a g4dn.xlarge GPU in-
stance with with 4 vCPUs and 16Gb of memory or
a p3.2xlarge GPU instance with 8 vCPUs and 61Gb
of memory. An example of running the baseline
code on AWS using Slurm is shown in Figure 3.
This image shows how Slurm reported the quantity
of AWS credits spent when a user queued a job.
On the AWS cluster, users had read-only access
to a task wide directory containing the shared task
data, and other library resources. Teams also had

Team (Sub.) F1 F2 TPR FAR AUC

NUSIDS (1) 0.583 0.648 0.700 0.636 0.645
NUSIDS (2) 0.615 0.714 0.800 0.727 0.664
NUSIDS (3) 0.300 0.300 0.300 0.636 0.373
ScyLab (1) 0.526 0.481 0.455 0.273 0.678
ScyLab (2) 0.526 0.481 0.455 0.273 0.678
ScyLab (3) 0.421 0.385 0.364 0.364 0.636
sentimenT5 (1) 0.455 0.455 0.455 0.545 0.438
sentimenT5 (2) 0.500 0.472 0.455 0.364 0.616
sentimenT5 (3) 0.571 0.656 0.727 0.818 0.413
SoS (1) 0.286 0.278 0.273 0.636 0.264
SoS (2) 0.400 0.377 0.364 0.455 0.529
SoS (3) 0.364 0.364 0.364 0.636 0.397
UlyaLamia (1) 0.692 0.763 0.818 0.545 0.702
UlyaLamia (2) 0.522 0.536 0.545 0.545 0.409
UlyaLamia (3) 0.636 0.636 0.636 0.364 0.740

Our baseline 0.636 0.636 0.636 0.364 0.661

Table 4: Results of participating systems and our base-
line for Subtask 1 (30 days). The best result for each
metric is listed in bold.

another shared directory on the cluster which could
only be accessed by the team and the shared task
organisers.

Materials can be requested for export by submit-
ting an export request via the Data Enclave Export
Review (DEER) tool, located within the Enclave
desktop. The shared task organizers review every
export request before it can be approved. Figure 6
shows an example of this export request screen.

7 Submissions

Each team was permitted up to three submissions
for each subtask (30 days and 6 months). In
each subtask, the numbered submissions for each
team distinguish the “primary” submission (num-
bered 1) from additional contrastive runs (num-
bered 2 and 3). In total, we received 30 submis-
sions, with five teams providing three runs each for
both subtasks.
NUSIDS (Zagatti et al., 2021). For the shared
task, NUSIDS designed SHTM, a Self-Harm Topic
Model, which combines standard Latent Dirichlet
Allocation (LDA) with a self-harm dictionary. This
was tested using a combination of the shared task
data, along with the practice dataset and the UMD
Reddit Suicidality Dataset. In their submission to
the task, the team used a combination of an LSTM
and term feature vectors with SHTM-based fea-
tures. Submissions varied in the hyper-parameters
of the model (e.g., window size and number of
topics), as well as the training data.

Team (Sub.) F1 F2 TPR FAR AUC

NUSIDS (1) 0.684 0.812 0.929 0.786 0.663
NUSIDS (2) 0.703 0.823 0.929 0.714 0.648
NUSIDS (3) 0.649 0.759 0.857 0.786 0.480
ScyLab (1) 0.769 0.704 0.667 0.067 0.809
ScyLab (2) 0.769 0.704 0.667 0.067 0.791
ScyLab (3) 0.815 0.764 0.733 0.067 0.844
sentimenT5 (1) 0.467 0.467 0.467 0.533 0.618
sentimenT5 (2) 0.516 0.526 0.533 0.533 0.591
sentimenT5 (3) 0.727 0.769 0.800 0.400 0.720
SoS (1) 0.429 0.411 0.400 0.467 0.444
SoS (2) 0.533 0.533 0.533 0.467 0.640
SoS (3) 0.400 0.400 0.400 0.600 0.502
UlyaLamia (1) 0.595 0.671 0.733 0.733 0.582
UlyaLamia (2) 0.581 0.592 0.600 0.467 0.564
UlyaLamia (3) 0.645 0.658 0.667 0.400 0.569

Our baseline 0.710 0.724 0.733 0.333 0.764

Table 5: Results of participating systems and our base-
line for Subtask 2 (6 months). The best result for each
metric is listed in bold.

ScyLab (Gamoran et al., 2021). The ScyLab sub-
mission used Bayesian modeling over features
grounded in domain knowledge. These features
included behavioral information learned by Twit-
ter activity, Linguistic Inquiry and Word Count
(LIWC) (Pennebaker et al., 2015) based features
using priors from Eichstaedt et al. (2018) and other
dictionary-based approaches. The submissions
varied the distributions for the priors and hyper-
parameters (type of regression) for the logistic-
regression model.
sentimenT5 (Morales et al., 2021). SentimenT5
took different approaches in their submissions to
explore the performance of simple traditional mod-
els versus fine-tuned deep learning models. In
both Subtasks 1 and 2, they submitted results from
gradient-boosted classifiers. One used syntax fea-
tures and the other character TF-IDF features. For
Subtask 1, they also submitted results from a con-
textualized language model classifier, and, for Sub-
task 2, a voting ensemble method.
SoS (Wang et al., 2021). Team SoS introduced
the C-Attention Network, which uses latent feature
information implicitly in the embeddings. This
was compared with submissions using KNN and
SVM classifiers. Latent features included using
Doc2vec embeddings (Lau and Baldwin, 2016).
Hand-crafted features included emotion lexicons,
part-of-speech tags, and a custom dictionary that
models various stages of suicidal behavior.
UlyaLamia (Bayram and Benhiba, 2021). In the

Figure 7: Rank comparison of the submissions for Sub-
task 1. A label of 1 indicates users with suicide at-
tempts. Ranks closer to 1 indicate a higher score (more
likely to have made a suicide attempt) given to the user.
Rows are sorted by label, then median rank.

UlyaLamia submissions, the authors were moti-
vated by real-life applicability of their model to use
tweet-level classification. The team’s submissions
used a majority voting approach over individual
tweets. In order to pick which machine learning
method to use, the team experimented with mul-
tiple methods tuned on the training data using a
leave-one-out strategy. Their final submissions
were the top methods from the leave-one-out re-
sults.

8 Results

We evaluated each system in terms of F1, F2 (favor-
ing recall), True Positive Rate (TPR), False Alarm
(Positive) Rate (FAR), and Area Under the ROC
Curve (AUC). We use F1 score as the primary eval-
uation metric, though it is valuable to consider all
metrics for a complete view of the system perfor-
mance.

We present the results of the submissions in Ta-
bles 4 and 5. In Subtask 1, Team UlyaLamia ranked
highest in F1, F2 and TPR; however, their FAR was
higher than the baseline and in the middle of the
other team’s submissions. Team UlyaLamia was
also the only team to exceed the baseline F1 score,
with NUSIDS being the next closest team. In Sub-
task 2, Team ScyLab ranked highest in F1, FAR,
and AUC. Their strongest submission beat or met
the baseline in every metric and was notably low
in their FAR. Five submissions came close or beat
the baseline in F1 score in Subtask 2.

The methods used by teams in the shared
task had difficulties performing well in both sub-

Figure 8: Rank comparison of the submissions for Sub-
task 2. A label of 1 indicates users with suicide at-
tempts. Ranks closer to 1 indicate a higher score given
to the user. Rows are sorted by label, then median rank.

tasks. Given shorter-term information starting
30 days prior to an attempt, tweet-specific language
(UlyaLamia) performed beste, but dictionary-based
methods (e.g., ScyLab) worked best with the
longer-term evidence (6 months prior to an at-
tempt).

To gain a better understanding of the differences
between the submissions, we plot the ranks of each
test user for both subtasks in Figures 7 and 8. From
these figures, we can see that some users easily
classified by most systems, while others were no-
tably difficult. For instance, user 26 in Figure 8
(Subtask 2), the majority of systems were (incor-
rectly) very confident that the user did not make a
suicide attempt. Nevertheless, three submissions
gave this user the highest or second-highest like-
lihood. These results suggest that an ensemble
method may be beneficial for this task.

The baseline was often similar to the other sub-
missions in its predictions. One exception in Sub-
task 1, was with user 9, which many systems were
not confident in their prediction, except the baseline
which gave this user the second-highest likelihood.
This is also seen in Subtask 2 with users 7 and 27.

The user ids are shared in Figures 7 and 8, which
means that user 1 in Figures 7 is the same user with
id 1 in Figures 8. We can see that in general, users
that were easily classified in Subtask 1, were also
easily classified in Subtask 2. However, there are
some users that were hard to classify in one subtask,

that are easier in the other. In Subtask 1, several
systems were very confident that user 10 did not
make a suicide attempt. In Subtask 2, these sys-
tems were generally less confident in this incorrect
prediction. Two of the systems even switched to
be very confident that the user did make a suicide
attempt. In Subtask 1, the baseline, was very confi-
dent in it’s incorrect prediction for user 7, but gave
it the fourth most likelihood in Subtask 2. This
could mean that some users did not have enough
tweets in the 30 day period to accurately make a
prediction. In contrast, user 19 was correctly pre-
dicted to have not made a suicide attempt by most
of the systems (including the baseline) in Subtask 1,
but was incorrectly predicted by the same systems
in Subtask 2. In the case, where Subtask 1 was
easier to predict the user, the additional tweets may
have added noise which made the prediction harder
to make.

This task is notably similar to Coppersmith et al.
(2018), who performed experimentation including
OurDataHelps.org data with similar restrictions,
matching criteria, and the same binary outcomes.
They found that a longer history of tweets led to
slightly better predictions, but, unlike our shared
task, they did not find a significant increase in per-
formance between using tweets 90 to 0 days prior
to an attempt and using tweets 180 to 90 days prior.
In Coppersmith et al. (2018), the AUC score us-
ing tweets 30 days prior to an attempt is .89 and
the AUC score using tweets six months prior to an
attempt is .93.

At the same time, it is important to note that
those results are not directly comparable to the
present task, given differences in dataset size and
composition. Coppersmith et al. (2018) used more
OurDataHelps data, and this was augmented with a
dataset of users who had made publicly self-stated
suicide attempts, building on work in Coppersmith
et al. (2016). In total, Coppersmith et al. (2018)
performed their experimentation using a dataset
containing 418 users with suicide attempts, com-
pared to this task’s 97 users.

9 Enclave Lessons Learned

We solicited feedback from all registered teams
(both those who submitted results and those who
did not) regarding the shared task experience. This
discussion and our lessons learned for the future
are informed by their comments.
Onboarding. Shared tasks are bursty by nature,

the first burst involving participants getting started.
In contrast, the ongoing operations of a data en-
clave involve a more continuous scheduling pro-
cess for new user account requests. This led to
challenges in the onboarding process. As noted
in Section 5, procedures for this shared task were
identical to the procedures used when serving orga-
nizations like government agencies, with not one
fewer i dotted, not one fewer t crossed. This meant
that teams experienced longer than expected delays
between completing their paperwork and actually
being able to begin work on the Enclave. We would
recommend more lead time in the future, leaving
significant time for account requests and also hav-
ing teams prioritize which members need access
first.

Importing code and dependencies. Similarly,
data enclaves require strict import policies and pro-
cedures; every import request is treated as though
it could contain highly confidential data, a virus, or
disabling code. Again, the bursty nature of shared
task activity created challenges. Despite our at-
tempts to anticipate and pre-load software and data
resources that were likely to be needed (informed
by an earlier survey of people engaged in CLPsych-
related work), the burst of requests as teams got
started created long delays as teams waited for their
code and software dependencies to come online.
Workarounds, such as recreating code manually,
were complicated by the inability to copy/paste
inside the environment.

Time zones. The CLPsych 2021 Shared Task re-
ceived global interest, with teams participating on
several continents. However, data enclaves rarely
provide 24/7 support. While having a diverse set
of teams work on the task is indispensable, having
support concentrated in a single U.S. time zone dis-
proportionately affected those working outside the
U.S. We anticipate that these issues could be miti-
gated in part by greater lead time (again), and also
by streamlining processes to require fewer round
trips of communication.

Slurm and Notebooks. These days, many prefer
to conduct NLP research in an interactive setting
using Jupyter Notebooks. While these were sup-
ported on the head node of the cluster, they were
not available when running jobs on compute nodes,
including those with GPU resources. This is worth
considering. While such an arrangement would
run through one’s compute budget faster (as com-
pute nodes would remain running), the interactive

benefits may be a tradeoff that teams are willing
to make, and this would also avoid batch-job over-
head for those who do not require the capabilities
offered by a scheduler like Slurm.
Connectivity and Enclave Maintenance. Like
any well supported infrastructure, the Enclave re-
quires regular maintenance and has occasional
downtime. Scheduled maintenance was easy to
plan for, but unplanned downtime can be a real
challenge in deadline-driven activities like a shared
task.

Despite these challenges, which certainly gave
rise to some frustration, a number of teams ex-
pressed gratitude for being able to work on data
that would otherwise be unavailable, and others
expressed that they were pleased with the overall
responsiveness and speed of the Enclave. Some
also expressed appreciation for having had am-
ple of compute credits for conducting their experi-
ments.10

If there is a unifying theme in our lessons
learned, it is that the challenges we encountered are
connected almost entirely with the gap between the
typical flexibility of experimental computational
work in NLP, particularly in the compressed time
frame of a shared task, versus the more extended,
carefully centralized, step-by-step, controlled pro-
cesses that take place on a data enclave. But of
course that’s the whole point: those same care-
ful, centralized processes are the things that guard
against inappropriate use and disclosure of sensi-
tive data.

As a particular note for the future, more ad-
vance planning and communication with partici-
pants would alleviate several of these challenges,
especially onboarding and importing code and de-
pendencies. For this shared task, we chose to prior-
itize allowing participants to start working on the
task sooner, rather than requiring teams to commit
long before they would begin work and start going
through a more structured and scheduled process to
prepare the Enclave with their specific team-level
requests. We attempted to preload needed libraries
and tools onto the Enclave even before teams be-
gan to register — but we could not predict all of
the tools and resources participants would want, so
even with our efforts there was still a gap. And
although we tested the onboarding process and cod-
ing experience, any new, diverse group of people is

10AWS credits supporting this activity were provided by
Amazon.

Suicide Attempt Users Control Users
% of
Matches

30 Days 6 Months 30 Days 6 Months
2.2% 2.3% 2.1% 1.9%

Table 6: The percent of keyword matches out of the
total number of words in each data set.

going to discover unanticipated issues when using
a large production environment for a new purpose.

That said, it is worth noting that a time-bounded
shared task is just one model for this type of collab-
orative work. In other domains, it is not uncommon
for community shared activity to take place over the
longer term, e.g use of the MIMIC dataset (Johnson
et al., 2016) in research on electronic health records.
A shorter-term, bursty event like a shared task may
be the wrong model when navigating between the
requirements of flexible research and the require-
ments of data privacy — many challenges would be
mitigated if participants were not all attempting to
meet the same deadline. Therefore, an alternative
paradigm to consider would involve a more gradual
intake of participants, reducing the backlogs and
avoiding bottlenecks in account creation and han-
dling of initial import requests. This would would
also allow participants to more freely work in their
own time zone, and factor in downtimes in their
schedule.

10 Suicide Crisis Syndrome Keyword
Search

In addition to the shared task effort, we engaged in
exploratory data analysis to look at potentially rele-
vant signals in language based on factors for suicide
crisis that have been validated by clinical research.
Suicide Crisis Syndrome (SCS) is a type of acute
suicidal condition which represents the presuici-
dal mental state a person is in before attempting
suicide (Voros et al., 2021). There is a set of cri-
teria associated with SCS, among which a feeling
of “frantic hopelessness“ or a recurring feeling of
entrapment is a dominant characteristic (Galynker
et al., 2014). A person might attempt suicide as
an escape from these feelings. These symptoms
can fluctuate over time and last between minutes to
days. This has been validated in a clinical settings
(Yaseen et al., 2019), where it has been found that
these symptoms are indicative of whether a patient
is going to make a suicide attempt.

It has yet to be seen if these symptoms are
present in patients’ language. Finding examples of
SCS in patients’ language would further validate

Users with suicide attempts Control Users
30 Days 6 Months 30 Days Controls 6 Months

Keyword Percent Keyword Percent Keyword Percent Keyword Percent
"with my" 0.162% "with my" 0.146% "with my" 0.194% "want to" 0.125%
"want to" 0.152% "want to" 0.117% "want to" 0.128% "with my" 0.118%
"do n’t" 0.110% "do n’t" 0.108% "do n’t" 0.105% "do n’t" 0.117%
"know what" 0.073% "know what" 0.050% "n’t have" 0.067% "i have" 0.043%
"talk to" 0.068% "i have" 0.049% "feel like" 0.061% "feel like" 0.041%
"because i" 0.063% "am just" 0.048% "am just" 0.044% "know what" 0.037%
"am just" 0.058% "talk to" 0.045% "makes me" 0.044% "am just" 0.034%
"feel like" 0.052% "n’t have" 0.041% "i have" 0.044% "my life" 0.033%
"n’t have" 0.047% "feel like" 0.040% "my life" 0.044% "n’t have" 0.032%
"for me" 0.047% "for me" 0.039% "the only" 0.039% "my friends" 0.032%
"makes me" 0.042% "my life" 0.035% "told me" 0.033% "just want" 0.032%
"makes me feel" 0.037% "i am" 0.032% "talk to" 0.033% "the only" 0.031%
"my friends" 0.037% "because i" 0.031% "that i" 0.033% "makes me" 0.030%
"just want" 0.037% "makes me feel" 0.029% "i am" 0.033% "talk to" 0.026%
"me but" 0.031% "makes me" 0.029% "know what" 0.028% "for me" 0.025%
"life is" 0.031% "i can" 0.028% "i just" 0.028% "up with me" 0.024%
"my head" 0.026% "i just want" 0.028% "this girl" 0.022% "do it" 0.023%
"taking my own" 0.026% "the only" 0.027% "made me" 0.022% "my family" 0.022%
"to live for" 0.026% "just want" 0.027% "right now" 0.022% "makes me feel" 0.021%
"i can" 0.026% "my best friend" 0.026% "only thing" 0.022% "me but" 0.021%
"i don’t" 0.021% "end my life" 0.026% "do it" 0.022% "i am" 0.021%
"the only" 0.021% "feels like" 0.024% "wake up" 0.022% "only thing" 0.019%
"i wanna" 0.021% "that i" 0.024% "feels like" 0.022% "have no one" 0.018%
"care about me" 0.021% "me but" 0.022% "for me" 0.022% "that i" 0.018%
"end my life" 0.021% "my friends" 0.022% "i can" 0.022% "right now" 0.018%

Table 7: The top 25 keywords found in the user’s tweets. The table is split for user’s with a suicide attempt and
the control users. The percentages given are a fraction of the number of keyword matches to the total number of
words in the data set.

SCS and would provide a method to help diagnose
SCS. We have created a list of keyword phrases
which might indicate SCS. This list was created by
analyzing posts from the UMD Reddit Suicidality
Dataset, comparing posts from the ’r/SuicideWatch’
subreddit to posts elsewhere on Reddit. We used
the Log-Odds Ratio Informative Dirichlet Prior
method (Monroe et al., 2008) to find uni-grams,
bi-grams and tri-grams more associated with the
’r/SuicideWatch’ subreddit.11 This method requires
a large background corpus in order to get a initial
prior estimate of the phrases. For this, we used the
COCA corpus (Davies, 2010). We then clustered
these keywords using k-means clustering with a
large number of clusters, in order to reduce the
number of similar phrases. Each cluster has a main
keyword phrase and a list of associated variants.

A keyword search was done on the tweets from
this shared task using the clusters found by the
method above in order to compare the number of
matches between users with a suicide attempt and
the control users. All single word keywords and
keywords with punctuation were removed before
matching. All matching variants were counted for

11This made use of Python code kindly shared by Dan
Jurafsky

the main keyword phrase for the cluster. For exam-
ple, a variant of “want to die” is “wanting to die”,
and an occurrence of either of these phrases would
count as an occurrence of the phrase “want to die”.

In Table 6 we can see that users with a suicide
attempt and the control users both had a similar
percentage of keyword matches. However, we do
see a difference in the top keyword matches. Ta-
ble 7 shows the top 25 keywords found in the user’s
tweets, where the keyword represents the cluster.
The cluster “end my life” occurs in both top 25
lists for user’s with a suicide attempt but not for
the control users. The clusters “taking my own”,
“care about me” and “to live for” are only in the
top 25 when looking at 30 days before a user’s sui-
cide attempt. These clusters could be a warning of
imminent suicidal intent. The cluster “my friends”
shows up commonly in most of the data sets, but
the cluster “my best friend” is only in the list for 6
months before an attempt. Looking at the tweets
which matched the cluster “my best friend”, we can
see that many of them are about a loss of a friend.
One tweet starts with “I always suck at goodbyes.
...” before thanking their best friend, other say “my
best friend is gone” and “my best friend broke my
[expletive] heart”. In the control tweets, both “this

girl” and “my family” are top clusters. The lack
of these clusters in tweets of users with a suicide
attempt could be a sign of social isolation, a symp-
tom of SCS.

Currently, we are working to refine this keyword
list with a group of expert coders. The goal is to
narrow down the list of keywords to only phrases
which are indicative of SCS symptoms so that this
keyword list can be used to flag for suicide crisis.

11 Conclusion

In this effort, we introduced a mental health shared
task using sensitive language data in a secure data
enclave that offered broad NLP and machine learn-
ing capabilities. Participants conducted studies on
the prediction of suicide risk based on tweets, us-
ing donated data containing actual outcomes rather
than proxy data and matching individuals who at-
tempted suicide with control users. Participants
built systems that were able to achieve high predic-
tive power (up to 0.823 F1 score), while carefully
balancing true positives and false alarms. Through
the shared task, we learned more about the chal-
lenges of conducting such a task in an enclave en-
vironment, leading to observations that will help
set the stage for future efforts of this kind. In ad-
dition, we performed an exploratory data analysis
using a list potentially identifying keywords for
SCS. Future work includes further investigation
of clinically relevant signals of suicide crisis in
patients’ language.

Acknowledgments

The shared task organizers would like to express
deep gratitude to the individuals who donated
data to OurDataHelps, without whom this research
would not be possible. The organizers are also
immensely grateful to all the participants for their
efforts and patience; to the NORC partners and
personnel (particularly co-author Jeff Leintz, Ron
Jurek, Kyle Stufflebaum, Ramon Castillo, Rachel
Miller, Sundeep Bhatia, Wesley Hale, Kim Le,
John Nieszel, Jason Keller, and the Data Enclave
Manager team) for their tremendous contributions
and their willingness to step out onto the bleed-
ing edge in making the Enclave and this shared
task happen; to Tim Mulcahy, Scot Ausborn, and
Christian Ilie for foundational discussions and ef-
fort getting the UMD/NORC Enclave collabora-
tion off the ground; to co-author Glen Copper-
smith, Tony Wood, Alex Yelskiy, and the rest of the

Qntfy team for their leadership in suicide-related
research and collecting and sharing OurDataHelps
donated data; to Alexander Hoyle for technical as-
sistance with AWS configuration; to Julia Lane for
useful background on data enclaves; to NAACL
for its support of CLPsych; and to the creators
of the depression-detection github repos-
itory. This shared task received internal financial
support at NORC and was also supported in part
by Amazon through an AWS Machine Learning
Research Award and by a University of Maryland
AI + Medicine for High Impact (AIM-HI) Chal-
lenge Award.

References
Emily Alsentzer, John R Murphy, Willie Boag, Wei-

Hung Weng, Di Jin, Tristan Naumann, and Matthew
McDermott. 2019. Publicly available clinical BERT
embeddings. In Proceedings of the 2nd Clinical Nat-
ural Language Processing Workshop (ClinicalNLP
2019).

Ulya Bayram and Lamia Benhiba. 2021. Determin-
ing a person’s suicide risk by voting the short-
term history of tweets for CLPsych 2021 shared
task. In Proceedings of the Seventh Workshop on
Computational Linguistics and Clinical Psychology
(CLPsych 2021).

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP 2019).

Adrian Benton, Glen Coppersmith, and Mark Dredze.
2017. Ethical research protocols for social media
health research. In Proceedings of the First ACL
Workshop on Ethics in Natural Language Process-
ing, pages 94–102.

Stevie Chancellor, Michael L. Birnbaum, Eric D.
Caine, Vincent M. B. Silenzio, and Munmun De
Choudhury. 2019. A taxonomy of ethical tensions in
inferring mental health states from social media. In
Proceedings of the conference on fairness, account-
ability, and transparency, pages 79–88.

Arman Cohan, Bart Desmet, Andrew Yates, Luca Sol-
daini, Sean MacAvaney, and Nazli Goharian. 2018.
SMHD: A large-scale resource for exploring on-
line language usage for multiple mental health con-
ditions. In Proceedings of the 27th International
Conference on Computational Linguistics (COLING
2018).

Glen Coppersmith, Mark Dredze, and Craig Harman.
2014. Quantifying mental health signals in Twitter.
In Proceedings of the workshop on computational

linguistics and clinical psychology: From linguistic
signal to clinical reality (CLPsych 2014), pages 51–
60.

Glen Coppersmith, Mark Dredze, Craig Harman,
Kristy Hollingshead, and Margaret Mitchell. 2015.
CLPsych 2015 shared task: Depression and PTSD
on Twitter. In Proceedings of the 2nd Workshop on
Computational Linguistics and Clinical Psychology:
From Linguistic Signal to Clinical Reality (CLPsych
2015), pages 31–39.

Glen Coppersmith, Ryan Leary, Patrick Crutchley, and
Alex Fine. 2018. Natural language processing of so-
cial media as screening for suicide risk. Biomedical
informatics insights, 10:1178222618792860.

Glen Coppersmith, Kim Ngo, Ryan Leary, and Tony
Wood. 2016. Exploratory data analysis of social me-
dia prior to a suicide attempt. In Proceedings of the
Workshop on Computational Linguistics and Clini-
cal Psychology: From Linguistic Signal to Clinical
Reality (CLPsych 2016).

Mark Davies. 2010. The corpus of contemporary amer-
ican english as the first reliable monitor corpus of en-
glish. Literary and linguistic computing, 25(4):447–
464.

Munmun De Choudhury and Sushovan De. 2014. Men-
tal health discourse on Reddit: Self-disclosure, so-
cial support, and anonymity. In Proceedings of the
International AAAI Conference on Web and Social
Media, volume 8.

Munmun De Choudhury, Emre Kiciman, Mark Dredze,
Glen Coppersmith, and Mrinal Kumar. 2016. Dis-
covering shifts to suicidal ideation from mental
health content in social media. In Proceedings of
the 2016 CHI conference on human factors in com-
puting systems, pages 2098–2110.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT 2019).

Johannes C Eichstaedt, Robert J Smith, Raina M Mer-
chant, Lyle H Ungar, Patrick Crutchley, Daniel
Preoţiuc-Pietro, David A Asch, and H Andrew
Schwartz. 2018. Facebook language predicts depres-
sion in medical records. Proceedings of the National
Academy of Sciences, 115(44):11203–11208.

Sindhu Kiranmai Ernala, Michael L Birnbaum,
Kristin A Candan, Asra F Rizvi, William A Ster-
ling, John M Kane, and Munmun De Choudhury.
2019. Methodological gaps in predicting mental
health states from social media: triangulating di-
agnostic signals. In Proceedings of the 2019 CHI
conference on human factors in computing systems,
pages 1–16.

Joseph C. Franklin, Jessica D. Ribeiro, Kathryn R.
Fox, Kate H. Bentley, Evan M. Kleiman, Xieyin-
ing Huang, Katherine M. Musacchio, Adam C.
Jaroszewski, Bernard P. Chang, and Matthew K.
Nock. 2017. Risk factors for suicidal thoughts and
behaviors: A meta-analysis of 50 years of research.
Psychological Bulletin.

Igor Galynker, Zimri Yaseen, and Jessica Briggs. 2014.
Assessing risk for imminent suicide. Psychiatric An-
nals, 44(9):431–436.

Avi Gamoran, Yonatan Kaplan, Almog Simchon, and
Michael Gilead. 2021. Using psychologically-
informed priors for suicide prediction in the
CLPsych 2021 shared task. In Proceedings of
the Seventh Workshop on Computational Linguistics
and Clinical Psychology (CLPsych 2021).

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Eric Horvitz and Deirdre Mulligan. 2015. Data, pri-
vacy, and the greater good. Science, 349(6245):253–
255.

Alistair EW Johnson, Tom J Pollard, Lu Shen,
H Lehman Li-Wei, Mengling Feng, Moham-
mad Ghassemi, Benjamin Moody, Peter Szolovits,
Leo Anthony Celi, and Roger G Mark. 2016. Mimic-
iii, a freely accessible critical care database. Scien-
tific data, 3(1):1–9.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Biing-Hwang Juang and Lawrence R Rabiner. 2005.
Automatic speech recognition–a brief history of the
technology development. Georgia Institute of Tech-
nology. Atlanta Rutgers University and the Univer-
sity of California. Santa Barbara, 1:67.

Julia Lane and Claudia Schur. 2010. Balancing access
to health data and privacy: a review of the issues and
approaches for the future. Health services research,
45(5p2):1456–1467.

Jey Han Lau and Timothy Baldwin. 2016. An empiri-
cal evaluation of doc2vec with practical insights into
document embedding generation. In Proceedings
of the 1st Workshop on Representation Learning for
NLP.

Ellen E Lee, John Torous, Munmun De Choudhury,
Colin A Depp, Sarah A Graham, Ho-Cheol Kim,
Martin P Paulus, John H Krystal, and Dilip V Jeste.
2021. Artificial intelligence for mental healthcare:

http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303

Clinical applications, barriers, facilitators, and artifi-
cial wisdom. Biological Psychiatry: Cognitive Neu-
roscience and Neuroimaging.

Sean Macavaney, Anjali Mittu, Glen Coppersmith, Jeff
Leintz, and Philip Resnik. 2021. Community-level
research on suicidality prediction in a secure envi-
ronment: Overview of the CLPsych 2021 shared
task. In Proceedings of the Seventh Workshop on
Computational Linguistics and Clinical Psychology
(CLPsych 2021). Association for Computational Lin-
guistics.

Burt L Monroe, Michael P Colaresi, and Kevin M
Quinn. 2008. Fightin’words: Lexical feature selec-
tion and evaluation for identifying the content of po-
litical conflict. Political Analysis, 16(4):372–403.

Michelle Morales, Prajjalita Dey, and Kriti Kohli. 2021.
Team 9: A comparison of simple vs. complex mod-
els for suicide risk assessment. In Proceedings of
the Seventh Workshop on Computational Linguistics
and Clinical Psychology (CLPsych 2021).

John A Naslund, Ameya Bondre, John Torous, and
Kelly A Aschbrenner. 2020. Social media and men-
tal health: Benefits, risks, and opportunities for re-
search and practice. Journal of technology in behav-
ioral science, 5(3):245–257.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

James W Pennebaker, Ryan L Boyd, Kayla Jordan, and
Kate Blackburn. 2015. The development and psy-
chometric properties of LIWC2015. Technical re-
port.

Philip Resnik, April Foreman, Michelle Kuchuk,
Katherine Musacchio Schafer, and Beau Pinkham.
2021. Naturally occurring language as a source of
evidence in suicide prevention. Suicide and Life-
Threatening Behavior, 51(1):88–96.

Felix Ritchie. 2017. The ’five safes’: a framework for
planning, designing and evaluating data access so-
lutions. In Data for Policy 2017: Government by
Algorithm? (Data for Policy). Zenodo.

Katherine M Schafer, Grace Kennedy, Austin Gal-
lyer, and Philip Resnik. 2021. A direct compar-
ison of theory-driven and machine learning pre-
diction of suicide: A meta-analysis. PLoS one,
16(4):e0249833.

Han-Chin Shing, Suraj Nair, Ayah Zirikly, Meir
Friedenberg, Hal Daumé III, and Philip Resnik.
2018. Expert, crowdsourced, and machine assess-
ment of suicide risk via online postings. In Proceed-
ings of the Fifth Workshop on Computational Lin-
guistics and Clinical Psychology: From Keyboard
to Clinic (CLPsych 2018), pages 25–36.

Han-Chin Shing, Philip Resnik, and Douglas W Oard.
2020. A prioritization model for suicidality risk as-
sessment. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8124–8137.

Robert Thorstad and Phillip Wolff. 2019. Predicting
future mental illness from social media: A big-data
approach. Behavior research methods, 51(4):1586–
1600.

Viktor Voros, Tamas Tenyi, Agnes Nagy, Sandor
Fekete, and Peter Osvath. 2021. Crisis concept
re-loaded?—the recently described suicide-specific
syndromes may help to better understand suicidal
behavior and assess imminent suicide risk more ef-
fectively. Frontiers in psychiatry, 12.

Ning Wang, Fan Luo, Yuvraj Shivtare, Varsha Badal,
K.P. Subbalakshmi, R. Chandramouli, and Ellen Lee.
2021. Learning models for suicide prediction from
social media posts. In Proceedings of the Seventh
Workshop on Computational Linguistics and Clini-
cal Psychology (CLPsych 2021).

Susan Wang, Labiba Kanij Rupty, Mahfuza Hu mayra
Mohona, Aarthi Alagammai, Munira Omar, and
Marwa Qabee. 2019. Depression detection using
Twitter data - group project for udacity private and
secure ai project showcase. https://github.
com/swcwang/depression-detection.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 conference of the North
American chapter of the association for computa-
tional linguistics: human language technologies,
pages 1480–1489.

Tal Yarkoni and Jacob Westfall. 2017. Choosing Pre-
diction Over Explanation in Psychology: Lessons
From Machine Learning. Perspectives on Psycho-
logical Science.

Zimri S Yaseen, Mariah Hawes, Shira Barzilay, and
Igor Galynker. 2019. Predictive validity of pro-
posed diagnostic criteria for the suicide crisis syn-
drome: an acute presuicidal state. Suicide and Life-
Threatening Behavior, 49(4):1124–1135.

Andrew Yates, Arman Cohan, and Nazli Goharian.
2017. Depression and self-harm risk assessment
in online forums. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2017), pages 2968–
2978, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Guilherme Augusto Zagatti, Sujatha Das Gollapalli,
and See-Kiong Ng. 2021. Suicide risk prediction by
tracking self-harm aspects in tweets. In Proceedings
of the Seventh Workshop on Computational Linguis-
tics and Clinical Psychology (CLPsych 2021).

https://github.com/swcwang/depression-detection
https://github.com/swcwang/depression-detection

Ayah Zirikly, Philip Resnik, Özlem Uzuner, and Kristy
Hollingshead. 2019. CLPsych 2019 shared task:
Predicting the degree of suicide risk in Reddit
posts. In Proceedings of the Sixth Workshop on
Computational Linguistics and Clinical Psychology
(CLPsych 2019).

A Data Preparation Code

A.1 standardize_data
import pandas as pd
import numpy as np

from utils import *

"""
This file will standardize the users and twitter data from odh.
It saves the clean data to new files.
"""

def read_tweets_data(file, chunksize=100000):
"""
Reads data from the twitter data file and saves it to a pandas dataframe.
This will pull out only the needed data since all of it will not fit in memory.

:param file: The file name of the twitter data
:param chunksize: The amount of data that should be read

before saving it to the dataframe
:return: The tweeter data as a dataframe
"""
tweets_df = pd.DataFrame()
with open(file) as f:

tweets_json = []
i = 0

for json_obj in f:
temp = json.loads(json_obj)
if temp["document"]["lang"] == "en":

Save the needed fields to a temporary array
tweets_json.append(

{
"text": temp["document"]["text"],
"user_id": temp["meta"]["user_id"],
"created_at": temp["document"]["created_at"],
"id": temp["document"]["id"]

}
)

if i % chunksize == 0:
After reading in a certain amount of tweets,
add them to the dataframe
df2 = pd.DataFrame(tweets_json)
tweets_df = pd.concat([tweets_df, df2],

ignore_index=True)
Clear the temporary array after adding
the tweets to the dataframe
tweets_json = []
print("Tweets read in: {}".format(i))

i += 1

Add any remaining tweets to the dataframe
df2 = pd.DataFrame(tweets_json)
tweets_df = pd.concat([tweets_df, df2], ignore_index=True)
tweets_df = tweets_df.astype({'user_id': 'float64'})
tweets_df["created_at"] = pd.to_datetime(tweets_df["created_at"],

format='%a %b %d %H:%M:%S %z %Y')
print("finished pulling data")
return tweets_df

def add_age_columns(df):
"""
Adds the column 'signup_form_age' with the age of the user

:param df: The dataframe to add the column to

:return: The dataframe with the added column
"""
df['signup_form_dob'] = pd.to_datetime(df['signup_form_dob'])
now = pd.Timestamp('now')
df['signup_form_age'] = (now - df['signup_form_dob']).astype('<m8[Y]')
return df

def clean_users_data(df):
"""
This will clean the users data by removing any users
missing their date of birth or gender field.
It also drops users who have suicide attemps but are
missing the date for the attempt. It will
also add columns for age and 'first_known_attempt'.

:param df: The dataframe to be cleaned
:return: The cleaned dataframe
"""
Add age column
df = add_age_columns(df)

Removing users with missing age or gender
df = df.dropna(subset=['signup_form_age', 'signup_form_gender'])

df = df.astype({"signup_form_dates_of_attempts_0": 'datetime64[ns]'})

Add column with the date of the first known attempt
df["first_known_attempt"] = df["signup_form_dates_of_attempts_0"]
df["last_known_attempt"] = df["signup_form_dates_of_attempts_0"]

for attempt in range(1, SIGN_UP_FORM_ATTEMPTS):
df["last_known_attempt"] = \

np.where(~df["signup_form_dates_of_attempts_{}".format(attempt)].isna(),
df["signup_form_dates_of_attempts_{}".format(attempt)],
df["last_known_attempt"])

df["signup_form_diagnoses"] = np.empty((len(df), 0)).tolist()
for ind, user in df.iterrows():

for d in range(1, SIGN_UP_FORM_DIAGNOSES):
if not pd.isna(df.loc[ind, "signup_form_diagnoses_{}".format(d)]):

df.loc[ind, "signup_form_diagnoses"].append(
df.loc[ind, "signup_form_diagnoses_{}".format(d)])

df["self_harm"] = np.where("Self Harm" in df["signup_form_diagnoses"], 1, 0)

num_users_with_attempt = \
df.loc[df["signup_form_num_attempts"] > 0]['email'].nunique()

print("Number of users with at least one attempt: {}".format(num_users_with_attempt))

num_users_with_no_attempt = \
df.loc[df["signup_form_num_attempts"] == 0]['email'].nunique()

print("Number of users with at no attempt: {}".format(num_users_with_no_attempt))

num_users_with_attempt_date = df.loc[(df["signup_form_num_attempts"] > 0) \
& (~df["first_known_attempt"].isna())]['email'].nunique()

print("Number of users with a attempt date: {}".format(num_users_with_attempt_date))

Drop users with attempts but no dates
user_without_dates = df.loc[(df["signup_form_num_attempts"] > 0) \

& (df["first_known_attempt"].isna())]["email"]
users_df = df[~(df["email"].isin(user_without_dates))]
return users_df

def add_twitter_info_to_users(users_df, twitter_df):
"""
This function will get additional information about
the users based on their tweets. It then
combines this information with the existing users dataframe.

:param users_df: The user dataframe
:param twitter_df: The twitter dataframe
:return: A new user dataframe with information about the tweets
"""
Get the users who have tweets
users = twitter_df["email"].unique()

users_arr = []
for u in users:

Get additional information about the users based on their tweets
date_of_first_tweet = twitter_df.loc[twitter_df["email"] == u]["created_at"].min()
date_of_latest_tweet = twitter_df.loc[twitter_df["email"] == u]["created_at"].max()
users_arr.append([u, date_of_first_tweet, date_of_latest_tweet])

Combine the new info with the user data read in
new_user_df = \

pd.DataFrame(data=users_arr,
columns=["email", "date_of_first_tweet", "date_of_latest_tweet"])

new_user_df = new_user_df.merge(
users_df[

['email',
"first_known_attempt",
"last_known_attempt",
"signup_form_age",
"signup_form_num_attempts",
"signup_form_gender",
"signup_form_diagnoses",
"has_attempt"]

],
left_on=['email'],
right_on=['email']

)

return new_user_df

def main():
users_file_name = os.path.join(ODH_DATA_PATH, "users/all-deidentified.json")
twitter_file_name = os.path.join(ODH_DATA_PATH, "twitter/all-deidentified.json")
output_path = CLEANED_DATA_PATH

Read in users
users_df = read_from_json(users_file_name)
print("Total number of users: {}".format(len(users_df)))

users_df = clean_users_data(users_df)
print(users_df.columns)
print("Total number of users after cleaning: {}".format(len(users_df)))

Read in tweets
tweets_df = read_tweets_data(twitter_file_name)

Join the users df with the tweets ones to see which users have tweets
tweets_df = tweets_df.merge(

users_df[
['social_media_accounts_twitter_user_id',
'email',
"first_known_attempt",
"self_harm"]

],
left_on=['user_id'],
right_on=['social_media_accounts_twitter_user_id']

)

Removing duplicate tweets
tweets_df = tweets_df.drop_duplicates()

Add column to tweets to show if user has an attempt
tweets_df["has_attempt"] = 0

tweets_df.loc[~tweets_df['first_known_attempt'].isna(), "has_attempt"] = 1

users_df["has_attempt"] = 0
users_df.loc[~users_df['first_known_attempt'].isna(), "has_attempt"] = 1

new_user_df = add_twitter_info_to_users(users_df, tweets_df)

num_users_with_attempt = new_user_df \
.loc[new_user_df["signup_form_num_attempts"] > 0]['email'].nunique()

print("Number of users with at least one attempt: {}".format(num_users_with_attempt))

num_users_with_no_attempt = new_user_df \
.loc[new_user_df["signup_form_num_attempts"] == 0]['email'].nunique()

print("Number of users with at no attempt: {}".format(num_users_with_no_attempt))

num_users_with_attempt_date = \
new_user_df.loc[(new_user_df["signup_form_num_attempts"] > 0) \

& (~new_user_df["first_known_attempt"].isna())][
'email'].nunique()

print("Number of users with a attempt date: {}".format(num_users_with_attempt_date))

print("Final number of users: {}".format(len(new_user_df)))

Write the cleaned tweets to file
write_to_json(tweets_df[

["email",
"text",
"created_at",
"has_attempt",
"id"
]

], os.path.join(output_path, "tweets.json"))

Write the cleaned users to file
write_to_json(new_user_df, os.path.join(output_path, "users.json"))

if __name__ == '__main__':
main()

A.2 make_pairs
import pandas as pd
import os
import argparse
import numpy as np

from utils import *

def print_number_users(df):
"""
Prints the number of users in the dataframe

:param df: The dataframe to do the count on
"""
print("Number of users: {}".format(df["email"].nunique()))

def main(days_of_tweets):
users_file_name = os.path.join(CLEANED_DATA_PATH, "users.json")
twitter_file_name = os.path.join(CLEANED_DATA_PATH, "tweets.json")
output_path = os.path.join(CLEANED_DATA_PATH, str(days_of_tweets))

Read in the standardized data
users_df = read_from_json_to_df(users_file_name)
tweets_df = read_from_json_to_df(twitter_file_name)

Convert columns to datatimes
tweets_df = tweets_df.astype({'created_at': 'datetime64[ns]',

'has_attempt': 'int'})

users_df = users_df.astype({'date_of_first_tweet': 'datetime64[ns]',
'first_known_attempt': 'datetime64[ns]',
'last_known_attempt': 'datetime64[ns]',
'date_of_latest_tweet': 'datetime64[ns]'})

print_number_users(tweets_df)

controls = []
pairs = []
attempts_without_tweets = 0
missing_control = 0
print("Removing users who do not have tweets 6 months before their attempt")
for ind, user in users_df.iterrows():

tweets_condition = (tweets_df["email"] == user["email"]) & \
(tweets_df["has_attempt"] == 1) & \

(tweets_df["created_at"] >= (user[attempt_field] -
pd.Timedelta(days_of_tweets, 'D'))) & \

(tweets_df["created_at"] <= user[attempt_field])
tweets = tweets_df.loc[tweets_condition]
if len(tweets) > 0:

positive_user = user["email"]
control_match = find_match(tweets_df,

users_df,
positive_user,
days_of_tweets,
controls)

if control_match != "":
controls.append(control_match)
pairs.append([positive_user, control_match])

else:
missing_control+=1

elif user["has_attempt"] == 1:
attempts_without_tweets+=1

print("Number of pairs: {}".format(len(pairs)))
print("Number of users with attempts but no tweets: {}".format(attempts_without_tweets))
print("Number of users with no match: {}".format(missing_control))

Split into train/test sets
np.random.shuffle(pairs)
test_split_ind = int(len(pairs)*TEST_SPLIT)

training_file_path = os.path.join(output_path, "pairs_train.csv")
testing_file_path = os.path.join(output_path, "pairs_test.csv")

if os.path.exists(training_file_path):
os.remove(training_file_path)

if os.path.exists(testing_file_path):
os.remove(testing_file_path)

write_array_to_csv(pairs[:test_split_ind], training_file_path)
write_array_to_csv(pairs[test_split_ind:], testing_file_path)

if __name__ == '__main__':
parser = argparse.ArgumentParser(

description='Matches uses to pairs in train and test sets')
parser.add_argument('--days_of_tweets',

help='the number of days of tweets to use',
default=182,
type=int)

args = parser.parse_args()
main(args.days_of_tweets)

A.3 clean_data
import pandas as pd
import os
import statistics
import argparse

from utils import *

AGE_DIFF = 5
attempt_field = "last_known_attempt"

def print_number_users(df):
"""
Prints the number of users in the dataframe

:param df: The dataframe to do the count on
"""
print("Number of users: {}".format(df["email"].nunique()))

def remove_extra_tweets_for_pair(tweets_df, p, attempt_date, days_of_tweets):
"""
This will remove all tweets outside the configurable time
before the matching suicide attempt
(this is configured by DAYS_WITH_TWEETS).

:param tweets_df: The tweets dataframe
:param p: The pair of users
:param attempt_date: The attempt date for the first user in the pair
:param days_of_tweets: The number of days of tweets to use
:return: The tweets dataframe
"""
match_with_attempt = tweets_df["email"] == p[0]
match_with_control = tweets_df["email"] == p[1]
after_attempt = tweets_df["created_at"] > attempt_date
before_attempt = tweets_df["created_at"] < \

(attempt_date - pd.Timedelta(days_of_tweets, 'D'))

Remove the tweets after the attempt
for u in p:

same_user = tweets_df["email"] == u
different_user = tweets_df["email"] != u
tweets_df = tweets_df.loc[different_user | (same_user & ~after_attempt)]

Remove the tweets too far before the attempt
for u in p:

same_user = tweets_df["email"] == u
different_user = tweets_df["email"] != u
tweets_df = tweets_df.loc[different_user | (same_user & ~before_attempt)]

Check that both in the pair have the same number of tweets
num_tweets0 = len(tweets_df.loc[match_with_attempt])
num_tweets1 = len(tweets_df.loc[match_with_control])
num_tweets_removed = 0
while abs(num_tweets0-num_tweets1) > (num_tweets0+num_tweets1)*.2:

if num_tweets0 < num_tweets1:
Remove the oldest tweet from the control
time_of_earliest_tweet = tweets_df.loc[match_with_control]["created_at"].min()
tweets_df = tweets_df.loc[tweets_df["created_at"] != time_of_earliest_tweet]
num_tweets1-=1
num_tweets_removed+=1

if num_tweets1 < num_tweets0:
Remove the oldest tweet from the user with attempt
time_of_earliest_tweet = tweets_df.loc[match_with_attempt]["created_at"].min()
tweets_df = tweets_df.loc[tweets_df["created_at"] != time_of_earliest_tweet]
num_tweets0-=1
num_tweets_removed+=1

return tweets_df,num_tweets_removed

def main(days_of_tweets):
users_file_name = os.path.join(CLEANED_DATA_PATH, "users.json")
twitter_file_name = os.path.join(CLEANED_DATA_PATH, "tweets.json")
output_path = os.path.join(CLEANED_DATA_PATH, str(days_of_tweets))

Read in the standardized data

users_df = read_from_json_to_df(users_file_name)
tweets_df = read_from_json_to_df(twitter_file_name)

Convert columns to datatimes
tweets_df = tweets_df.astype({'created_at': 'datetime64[ns]',

'has_attempt': 'int'})
users_df = users_df.astype({'date_of_first_tweet': 'datetime64[ns]',

'first_known_attempt': 'datetime64[ns]',
'last_known_attempt': 'datetime64[ns]',
'date_of_latest_tweet': 'datetime64[ns]'})

pairs = [pair for pair in get_pairs(os.path.join(output_path, "pairs_train.csv"))]
pairs.extend([pair for pair in get_pairs(os.path.join(output_path, "pairs_test.csv"))])

users_to_keep = [user for pair in pairs for user in pair]
tweets_df = tweets_df.loc[tweets_df['email'].isin(users_to_keep)]
users_df = users_df.loc[users_df['email'].isin(users_to_keep)]

print("Set each pair to have the same number of tweets")
tweets_df["attempt_date"] = 0
total_tweets_removed = []
Set each pair to have the same number of tweets
for p in pairs:

attempt_date = \
users_df.loc[users_df["email"] == p[0]][attempt_field].unique()[0]

tweets_df, num_tweets_removed = \
remove_extra_tweets_for_pair(tweets_df, p, attempt_date, days_of_tweets)

tweets_df.loc[tweets_df["email"] == p[0], "attempt_date"] = attempt_date
tweets_df.loc[tweets_df["email"] == p[1], "attempt_date"] = attempt_date
total_tweets_removed.append(num_tweets_removed)

print("The average difference in tweets: {}".format(
sum(total_tweets_removed) // len(total_tweets_removed)))

print("The median difference in tweets: {}".format(
statistics.median(total_tweets_removed)))

print("The max difference in tweets: {}".format(max(total_tweets_removed)))

print(len(tweets_df))
print(len(users_df))

write_to_json(tweets_df, os.path.join(output_path, "tweets_clean.json"))
write_to_json(users_df, os.path.join(output_path, "users_clean.json"))

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Removes additional tweets')
parser.add_argument('--days_of_tweets', help='the number of days of tweets to use',

default=182, type=int)
args = parser.parse_args()
main(args.days_of_tweets)

A.4 format_data
import os
import argparse
from utils import *

def format_data(users_df, tweets_df, pairs_file_path, save_file_path):
users = [user for pair in get_pairs(pairs_file_path) for user in pair]
time_format = '%a %b %d %H:%M:%S %z %Y'
for u in users:

if len(tweets_df.loc[tweets_df["email"] == u]) != 0:
tweets = []
for ind, tweet in tweets_df.loc[tweets_df["email"] == u].iterrows():

tweets.append({
"text": tweet["text"],
"created_at":

pd.to_datetime(tweet["created_at"]).strftime(time_format),
"id": str(tweet["id"])

})

date_of_attempt = \
users_df.loc[users_df["email"] == u]["last_known_attempt"].unique()[0]

user_json = {"label":
int(tweets_df.loc[tweets_df["email"] == u]

["has_attempt"].iloc[0]),
"id": u,
"date_of_attempt":

pd.to_datetime(date_of_attempt).strftime('%Y.%m.%d')
if str(date_of_attempt) != "NaT" else "",

"tweets": tweets}
append_json(user_json, save_file_path)

else:
print("User {} has no tweets".format(u))

def main(days_of_tweets):
path_to_data = os.path.join(CLEANED_DATA_PATH, str(days_of_tweets))
users_file_name = os.path.join(path_to_data, "users_clean.json")
twitter_file_name = os.path.join(path_to_data, "tweets_clean.json")

print("Splitting by users")
users_df = read_from_json_to_df(users_file_name)
tweets_df = read_from_json_to_df(twitter_file_name)

tweets_df = tweets_df.astype({'created_at': 'datetime64[ns]',
'has_attempt': 'int'})

users_df = users_df.astype({'last_known_attempt': 'datetime64[ns]'})

training_file_path = os.path.join(path_to_data, "train.jsonl")
testing_file_path = os.path.join(path_to_data, "test_truths.jsonl")

if os.path.exists(training_file_path):
os.remove(training_file_path)

if os.path.exists(testing_file_path):
os.remove(testing_file_path)

print("training data")
format_data(users_df, tweets_df,

os.path.join(path_to_data, "pairs_train.csv"), training_file_path)

print("testing data")
format_data(users_df, tweets_df,

os.path.join(path_to_data, "pairs_test.csv"), testing_file_path)

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Formats the data for the shared task')
parser.add_argument('--days_of_tweets', help='the number of days of tweets to use',

default=182, type=int)
args = parser.parse_args()
main(args.days_of_tweets)

B Baseline Code

B.1 tokenize_data
import argparse
import os
import json
from spacy.lang.en import stop_words
import twikenizer as twk
import re
import string
from nltk.corpus import words

spacy_stopwords = stop_words.STOP_WORDS
tokenizer = twk.Twikenizer()

word_dictionary = list(set(words.words()))

for alphabet in "bcdefghjklmnopqrstuvwxyz":
word_dictionary.remove(alphabet)

def append_json(json_data, file_path):
"""
Write json to file
:param json_data: Json to write
:param file_path: Path of the file
"""
with open(file_path, 'a+') as f:

json.dump(json_data, f)
f.write("\n")

def split_hashtag_to_words_all_possibilities(hashtag):
all_possibilities = []

split_posibility = [hashtag[:i] in word_dictionary
for i in reversed(range(len(hashtag) + 1))]

possible_split_positions = [i for i, x in enumerate(split_posibility)
if x == True]

for split_pos in possible_split_positions:
split_words = []
word_1, word_2 = hashtag[:len(hashtag) - split_pos], \

hashtag[len(hashtag) - split_pos:]

if word_2 in word_dictionary:
split_words.append(word_1)
split_words.append(word_2)
all_possibilities.append(split_words)

another_round = split_hashtag_to_words_all_possibilities(word_2)

else:
another_round = split_hashtag_to_words_all_possibilities(word_2)

if len(another_round) > 0:
all_possibilities += [[a1] + a2

for a1, a2, in zip([word_1] * len(another_round), another_round)]

return all_possibilities

def split_hashtag(token):
split_hashtag = re.findall('[A-Z][^A-Z]*', token)
if len(split_hashtag) > 1:

return split_hashtag
split_hashtag = token.split('_')
if len(split_hashtag) > 1:

return split_hashtag
all_possibilities = split_hashtag_to_words_all_possibilities(token)
min_split = float("inf")
for pos in all_possibilities:

if len(pos) < min_split:
min_split = len(pos)

for pos in all_possibilities:
if len(pos) == min_split:

return pos

return ""

def normalizeToken(token):
lowercase_token = token.lower()
if token.startswith("@"):

return ""
elif lowercase_token.startswith("http") or lowercase_token.startswith("www"):

return ""
elif token.startswith("#"):

return split_hashtag(token[1:])
elif token in string.punctuation:

return ""
elif len(token) == 1:

return ""
else:

if token == "’":
return "'"

elif token == "...":
return "..."

else:
return token

def tokenize_tweets(tweets):
new_tweets = []
for tweet in tweets:

tweet_tokens = []
for token in tokenizer.tokenize(re.sub(r'http\S+', '', tweet.lower())):

norm_token = normalizeToken(token)
if isinstance(norm_token, list):

for t in norm_token:
if t not in spacy_stopwords:

tweet_tokens.append(t)
else:

if token not in spacy_stopwords and token != "":
tweet_tokens.append(norm_token)

new_tweets.append(tweet_tokens)
return new_tweets

def tokenize_file(file_path, save_file_path):
with open(file_path, 'r') as f:

for json_obj in f:
data_json = json.loads(json_obj)
raw_tweets = []
for tweet in data_json["tweets"]:

raw_tweets.append(tweet["text"])
tweets = tokenize_tweets(raw_tweets)
user_json = {"text": tweets,

"id": data_json["id"]}
if "label" in data_json:

user_json["label"] = data_json["label"]
append_json(user_json, save_file_path)

def main(input_file_path, output_file_path):
training_file_path = os.path.join(output_file_path, "train_tokenized.jsonl")
testing_file_path = os.path.join(output_file_path, "test_tokenized.jsonl")

if os.path.exists(training_file_path):
os.remove(training_file_path)

if os.path.exists(testing_file_path):
os.remove(testing_file_path)

print("Tokenizing training data")
tokenize_file(os.path.join(input_file_path, "train.jsonl"), training_file_path)
if os.path.exists(os.path.join(input_file_path, "test.jsonl")):

print("Tokenizing test data")
tokenize_file(os.path.join(input_file_path, "test.jsonl"), testing_file_path)

else:
print("No test data found")

print("Done")

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Tokenizes the data for the shared task')
parser.add_argument('--input',

help='the directory with the input files', type=str)
parser.add_argument('--output',

help='the directory where the output files should go',
type=str)

args = parser.parse_args()
main(args.input, args.output)

B.2 baseline_model
import os
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import CountVectorizer
import argparse
import json
import csv

def read_data(file_path):
data = []
with open(file_path, 'r') as f:

for json_obj in f:
data.append(json.loads(json_obj))

return data

def get_all_tweets(data):
tweets = []
for user in data:

full_tweets = []
for tweet in user["text"]:

full_tweets.extend(tweet)
tweets.append(" ".join(full_tweets))

return tweets

def write_results(output_path, results):
with open(os.path.join(output_path, "results.tsv"), 'wt') as out_file:

tsv_writer = csv.writer(out_file, delimiter='\t')
tsv_writer.writerows(results)

def main(input_file_path, output_file_path):
Read the data
train_data = read_data(os.path.join(input_file_path, "train_tokenized.jsonl"))
test_data = read_data(os.path.join(input_file_path, "test_tokenized.jsonl"))

tweets_train = get_all_tweets(train_data)
has_attempt_train = [data_json["label"] for data_json in train_data]

count_vectorizer = CountVectorizer(analyzer='word',
token_pattern=r'\w+',
ngram_range=(1, 2))

bow = dict()
bow["train"] = (count_vectorizer.fit_transform(tweets_train), has_attempt_train)

lr_classifier = LogisticRegression(solver='liblinear')
lr_classifier.fit(*bow["train"])

output = []
for user in test_data:

probs = lr_classifier.predict_proba(
count_vectorizer.transform(get_all_tweets([user])))

output.append([user["id"],
lr_classifier.classes_[probs[0].argmax()], probs[0][1]])

write_results(output_file_path, output)

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Tokenizes the data for the shared task')

parser.add_argument('--input',
help='the directory with the input files', type=str)

parser.add_argument('--output',
help='the directory where the output files should go',
type=str)

args = parser.parse_args()
main(args.input, args.output)

B.3 evaluation
import json
import argparse
import csv
from sklearn.metrics import f1_score, fbeta_score, confusion_matrix, roc_curve, auc

"""
This will calculate statistics on predictions from the model
"""

def main(results_file_path, truth_file_path, pos_label_name):
truth_values = {}
with open(truth_file_path) as f:

for json_obj in f:
data = json.loads(json_obj)
truth_values[data["id"]] = str(data["label"])

predictions = []
probs = []
truths = []
with open(results_file_path) as rf:

results = csv.reader(rf, delimiter="\t")
for pred in results:

predictions.append(pred[1])
probs.append(float(pred[2]))
truths.append(truth_values[pred[0]])

f1 = f1_score(truths,
predictions,
average='binary',
pos_label=pos_label_name)

f2 = fbeta_score(truths,
predictions,
beta=2,
average='binary',
pos_label=pos_label_name)

tn, fp, fn, tp = confusion_matrix(truths, predictions).ravel()
true_positives = tp / (tp + fn)
false_alarms = fp / (fp + tn)

fpr, tpr, thresholds = roc_curve(truths, probs, pos_label=pos_label_name)
auc_score = auc(fpr, tpr)
print("{}, {}, {}, {}, {}".format(f1, f2, true_positives, false_alarms, auc_score))

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Prints statistics about the predictions.')
parser.add_argument('--results', help='path to the results file')
parser.add_argument('--truth', help='path to the truth file')
parser.add_argument('--pos', help='the name of the pos label')

args = parser.parse_args()
main(args.results, args.truth, args.pos)

